
Author
Ilko Kovac̆ić, BSc MSc

Submission
Institute of Business
Informatics - Data &
Knowledge Engineering

First Supervisor
o. Univ.-Prof. Dipl.-Ing.
Dr. Michael Schrefl

Second Supervisor
Mag. Dr.
Christoph Schütz

Assistant Thesis Supervisor
Mag. Dr.
Bernd Neumayr

October 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at

OLAP Patterns: A
Pattern-Based Approach to
Multidimensional Data
Analysis

Doctoral Thesis

to obtain the academic degree of

Doktor der Sozial- und Wirtschaftswissenschaften

in the Doctoral Program

Sozial- und Wirtschaftswissenschaften

Sworn Declaration

I, Ilko Kovačić, hereby declare under oath that the submitted Doctoral Thesis “OLAP
Patterns: A Pattern-Based Approach to Multidimensional Data Analysis” has been written
solely by me without any third-party assistance, information other than provided sources or
aids have not been used and those used have been fully documented. Sources for literal,
paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text
document.

Place, Date Ilko Kovac̆ić, MSc

i

Acknowledgments

I would like to thank the many dedicated people who have actively supported me in the
preparation of this thesis. First of all, I would like to thank my supervisor Michael Schrefl,
without whom this thesis would not have been possible. I would like to thank him especially
for the creative and exhaustive discussions in which we thought through envisaged ideas.

I owe special thanks to Christoph Schütz, who contributed significantly to this thesis and
showed me how challenging and emotional scientific work can be. I also owe thanks to my
colleague Bernd Neumayr, who provided valuable input and cheered me up by reminding
me that there are far worse things in the world than an unfinished thesis. My thanks also
go to Margit Brandl, who saved me from administrative mischief during the thesis. In
addition, I thank the master students Michael Moritz, who implemented the pattern-based
approach presented in this thesis, and Simon Schausberger, who implemented the prototype
in agriProKnow.

In addition, I would like to acknowledge all external circumstances, fortunate opportunities,
and coincidences beyond my control that contributed significantly to making this thesis
possible. First and foremost, the fact that I live in Europe and that it is possible to pursue
an academic path in Austria despite my parents’ lack of academic background.

Besides my superiors, colleagues, and fate, I would like to thank my mother Ora Kovačić,
who taught me the value of education and achievement from an early age. I also thank my
siblings Mara Rührlinger and Ivo Kovačić and their partners Thomas Rührlinger and Bettina
Buchendorfer, who have always stood by me. I also thank myself for being so pain-free
and disciplined and not following tempting offers from the private sector. Finally, I would
like to express my deepest gratitude to my partner, Marlene Bachleitner, for her patience,
everlasting support, and companionship throughout this bumpy journey.

ii

Preface

Problem solving, in the absence of experience, requires a great deal of cognitive effort, both
to understand the problem and to design and elicit possible solutions. Even if the chosen
solution proves to be sufficient for the problem, it may not be the best solution because
possible consequences of following it have not been considered. However, in order to apply
the best possible solution, the experiences of others must be externalized in order to draw
on them. For this purpose, a pattern-based approach has proven successful in a wide variety
of domains, as patterns can be used to document and communicate best-practice solutions
for recurring problems.

In the agriProKnow research and development project, funded by the Austrian Research
Promotion Agency under grant number FFG-848610 to develop a business intelligence (BI)
system for precision dairy, we applied a pattern-based approach to document, communicate,
and reuse best-practice solutions for composing ad hoc OLAP queries to meet specific
types of information needs. The lessons learned during the agriProKnow project with
respect to the use of a pattern-based approach to compose ad hoc OLAP queries, formed
the foundation for this thesis. Therefore, this thesis is relevant to anyone involved in
the implementation and support of BI projects. In particular, for those responsible for
implementing ad hoc queries to satisfy information needs, which includes both experienced
users such as IT developers, data engineers, data scientists and less experienced users such
as domain experts, decision makers, and business analysts.

This thesis is largely based on publications that have been developed by myself with Michael
Schrefl, Christoph Schütz, Bernd Neumayr, Simon Schausberger, and Roman Sumereder [1],
[2] and a manuscript titled OLAP Patterns: A Pattern-Based Approach to Multidimensional
Data Analysis, which is still under review at the time of submission. Since I am the primary
author with respect to last work, excerpts from it are taken directly and adapted where
appropriate and not explicitly identified.

iii

Kurzfassung

Anwender*innen von Business-Intelligence (BI)-Systemen verwenden einen Ansatz, der als
Online Analytical Processing (OLAP) bezeichnet wird, um multidimensionale Daten aus ver-
schiedenen Perspektiven zu betrachten. Abfragesprachen wie SQL oder MDX ermöglichen
dabei die flexible Abfrage von multidimensionalen Daten. Für viele Anwender*innen ist die
Formulierung solcher Abfragen jedoch kognitiv anspruchsvoll und daher oft zeitaufwendig.
Alternativen zur Verwendung einer Abfragesprache wie grafische OLAP-Clients, paramet-
risierte Berichte oder Dashboards sind oft keine vollwertige Alternative zur Verwendung
einer Abfragesprache. Die Erfahrungen aus Forschungsprojekten in Kooperation mit In-
dustriepartnern führten zu den folgenden Beobachtungen hinsichtlich der Verwendung von
OLAP-Abfragen in der Praxis: Erstens werden innerhalb derselben Organisation wiederholt
ähnliche OLAP-Abfragen von Grund auf neu zusammengestellt, um ähnliche Informa-
tionsbedürfnisse zu befriedigen. Zweitens werden ähnlich strukturierte OLAP-Abfragen
über verschiedene Organisationen und sogar Domänen hinweg wiederholt von Grund auf
neu erstellt. Schließlich können vage Anforderungen an häufig benötigte OLAP-Abfragen
in der Frühphase eines Projekts zu einer überstürzten Entwicklung in späteren Phasen
führen, was bis zu einem gewissen Grad vermieden werden kann, indem bewährte Lösungen
(Best-Practices) für die Zusammenstellung von OLAP-Abfragen herangezogen werden. Im
Ingenieurwesen wird das Wissen über Best-Practice-Lösungen für häufig auftretende Heraus-
forderungen oft in Form von Mustern (Patterns) dokumentiert. In diesem Sinne beschreibt
ein OLAP-Muster eine generische Lösung für die Zusammenstellung einer Abfrage, die
es BI-Anwender*innen ermöglicht, eine bestimmte Art von Informationsbedarf anhand
von Fragmenten eines konzeptuellen Modells zu befriedigen. In dieser Arbeit wird eine
formale Definition von OLAP-Mustern sowie eine ausdrucksstarke, flexible und allgemein
anwendbare Definitionssprache vorgestellt.

iv

Abstract

Users of a business intelligence (BI) system employ an approach referred to as online
analytical processing (OLAP) to view multidimensional data from different perspectives.
Query languages, e.g., SQL or MDX, allow for flexible querying of multidimensional
data but query formulation is often time-consuming and cognitively challenging for many
users. Alternatives to using a query language, e.g., graphical OLAP clients, parameterized
reports, or dashboards, are often not a full-blown alternative to using a query language.
Experience in cooperative research projects with industry led to the following observations
regarding the use of OLAP queries in practice. First, within the same organization, similar
OLAP queries are repeatedly composed from scratch in order to satisfy similar information
needs. Second, across different organizations and even domains, OLAP queries with similar
structures are repeatedly composed from scratch. Finally, vague requirements regarding
frequently composed OLAP queries in the early stages of a project potentially lead to rushed
development in later stages, which can be alleviated by following best practices for OLAP
query composition. In engineering, knowledge about best-practice solutions to frequently
arising challenges is often documented and represented using patterns. In that spirit, an
OLAP pattern describes a generic solution for composing a query that allows a BI user to
satisfy a certain type of information need given fragments of a conceptual model. This
thesis introduces a formal definition of OLAP patterns as well as an expressive, flexible,
and generally applicable definition language.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 3
1.3 Contributions . 5
1.4 Outline . 7

2 The Pattern-Based Approach in a Nutshell 9
2.1 Pattern Definition and Usage . 9
2.2 Running Example . 13

3 Related Work 23
3.1 Patterns in General . 23
3.2 Data Modeling Patterns . 25
3.3 Data Analysis Patterns . 29
3.4 Visual Analytics and Model-Driven Analytics 32

4 Enriched Multidimensional Models 38
4.1 Enriching Multidimensional Models with Business Terms 38
4.2 Usage of Business Terms . 47
4.3 Enriched Multidimensional Model Notation 49

5 Pattern Definition 53
5.1 Formal Pattern Foundations . 53
5.2 Graphical Pattern Notation . 59

6 Pattern Usage 62
6.1 Pattern Instantiation and Grounding . 62

vi

CONTENTS vii

6.2 Pattern Execution . 70

7 Pattern Organization 72
7.1 Levels of Abstraction . 72
7.2 Domain-Independent Patterns . 75
7.3 Domain-Specific Patterns . 80
7.4 Organization-Specific Patterns . 82
7.5 Pattern Catalogs . 84

8 Proof-of-Concept Prototype 88
8.1 Architecture . 88
8.2 Functionality . 90
8.3 Components . 93
8.4 Usage Scenario . 101

9 Evaluation 105
9.1 Relevance and Expressiveness . 105
9.2 Quality Assessment as a Domain-Specific Language 106

10 Extensions 118
10.1 Composite Types . 118
10.2 Optional Variables . 123
10.3 Generic Business Terms . 125
10.4 Description of Value Sets . 127

11 Conclusion 129
11.1 Summary . 129
11.2 Discussion . 130
11.3 Future Work . 132

Bibliography 134

List of Figures 144

List of Tables 147

List of Listings 148

A ANTLR4 Grammar Definitions 150

B Domain-Independent Pattern Catalog 161

CONTENTS viii

B.1 Non-Comparative Pattern . 162
B.2 Homogeneous Subset-Baseset Comparison 167
B.3 Homogeneous Subset-Complement Comparison 173
B.4 Homogeneous Subset-Subset Comparison 179
B.5 Heterogeneous Subset-Subset Comparison 184

C Domain-Specific Sample Pattern From the AgriProKnow Use Case 189

D Fully-Worked Organization-Specific Running Example of the Thesis 195

E Curriculum Vitæ 208

Chapter 1
Introduction

Multidimensional data analysis is central to descriptive analytics in general and online
analytical processing (OLAP) in particular. In this thesis, we present a pattern-based
approach to multidimensional data analysis, the development of which was informed by
experience from cooperative research projects with industry participation. In the following,
we describe the motivation behind the pattern-based approach to multidimensional data
analysis (Section 1.1), sketch the presented approach (Section 1.2), explain the contributions
of this thesis (Section 1.2), and give an overview of the organization of the remainder of
this thesis (Section 1.4).

1.1 Motivation

The data warehouse remains a staple of modern business intelligence (BI) and analytics,
providing integrated, clean, and consistent data using a representation suitable for data
analysis. The predominant form of data representation in data warehouses is the multidimen-
sional model, which arranges business events of interest (facts) in a multidimensional space
(cube) along dimensions with hierarchically organized levels of granularity. Multidimensional
data models allow to view data from different perspectives, using an approach referred to
as online analytical processing (OLAP) for the composition of analytical queries over the
cubes.

Existing OLAP systems present BI users with different options regarding the composition of
analytical queries over a data warehouse. Using a query language, e.g., SQL or MDX, allows
for querying the data warehouse in a flexible, ad hoc manner but is often time-consuming
and cognitively challenging [3]. Graphical OLAP clients as well as parameterized reports,
dashboards, and interactive stories, while considerably facilitating data analysis, are often
not a full-blown alternative to using a query language due to reduced expressiveness and

1

CHAPTER 1. INTRODUCTION 2

increased rigidity regarding the supported types of analytical queries. Analytical queries are
also often an important preparatory step for further statistical analysis and data mining.

Over the years, we have been involved in multiple BI and analytics research projects across
different domains, in collaboration with various partners from industry and academia. In
particular, those projects focused on data analysis for precision dairy farming [4], ontology-
driven data analysis [5], with specific applications in the health insurance domain, and
reference modeling for data analysis [6], [7], including data analysis processes [8], with
applications in manufacturing and services industries. In these projects, we assumed the
roles of researchers, consultants, and developers. While working on these projects we made
the following observations which motivated the design of OLAP patterns:

1. Within the same organization, similar OLAP queries are repeatedly composed from
scratch in order to satisfy similar information needs. For example, an OLAP query
that compares the average milk yield of cattle at farm site A with the average milk
yield of cattle at farm site B per month in 2019 is similar to an OLAP query that
compares the maximum milk yield of cattle at farm site A with the maximum milk
yield of cattle at farm site B per week in May 2018. Both OLAP queries select sets
of facts and compare measure values for those sets with each other.

2. Not only within the same organization but also across different organizations and
even domains, OLAP queries with similar structures are repeatedly composed from
scratch. OLAP queries relevant for one organization are possibly relevant for other
organizations in the same domain since context and, therefore, the arising information
needs are similar. For example, many different dairy farms execute an OLAP query
that compares the average β-hydroxybutyric acid (BHB) level in the blood of cattle
under heat stress with the average BHB level in the blood of cattle free of heat stress.
Furthermore, even across vastly different domains, queries concerning the same type
of information need tend to be similarly structured even though the captured events
of interest and the employed business vocabulary vary. For example, the previous
query from the dairy farming domain is similar in structure to an OLAP query that
compares the average blood sugar level of patients suffering from diabetes mellitus
type 1 with the average blood sugar level of patients suffering from diabetes mellitus
type 2 per state.

3. In the early stages of a BI project, requirements regarding the OLAP queries that are
to be composed often remain unclear, potentially resulting in rushed development
in later stages when schedules are tight. What queries have to be composed in
an OLAP system depends on the available data sources that are integrated in the

CHAPTER 1. INTRODUCTION 3

data warehouse as well as the designed multidimensional data model. Requirements
typically evolve during the project as the components are implemented. Consequently,
new user demands regarding interesting analysis that should be easily carried out in
the final system also arise during the later stages of a BI project.

The previous observations can be attributed to the fact that there is typically little or no
documentation of knowledge about the composition of OLAP queries. The knowledge that
goes into the composition of OLAP queries for satisfying specific information needs or types
of information needs is typically neither being externalized nor documented in an accurate,
unambiguous, complete, and easily accessible manner [9], [10]. The composition of OLAP
queries requires familiarity with the employed query language as well as knowledge of the
underlying data model and the relevant business terms. The lack of documentation of such
knowledge – knowledge that could speed up query composition – hinders its proliferation
within an organization, within a domain, and across different domains. Documentation, if
available at all, is usually limited to a concrete implementation, i.e., a specific, possibly
parameterized, OLAP query composed in a target language for a specific data model.
Consequently, the extent of documentation is often barely sufficient to be helpful for the
composition of queries for similar information needs in the same organization, let alone in a
different organization or domain. Even in cases where query reuse is possible, the required
modification of the existing queries makes reuse more error-prone and yields less accurate
results in general than query composition from scratch [3].

1.2 Approach

A lack of knowledge transfer hampers the development and widespread adoption of best
practices regarding OLAP query composition for common types of information needs – users
keep “reinventing the wheel” when it comes to query composition. Following an established
set of best practices, however, may reduce the cognitive effort required for the composition
of correct queries, help users avoid common pitfalls, and ultimately reduce composition
time. Following best practices may also result in less obfuscated solutions, which would in
turn increase maintainability of OLAP queries. In addition, best practices make it possible
to identify and anticipate possible common requirements in BI projects so that the schedule
can be met without the increased development effort in later phases that would otherwise
be necessary. Proper documentation and representation of knowledge regarding OLAP
query composition to answer common types of information needs is a prerequiste for the
establishment of best practices within individual organizations as well as across different
organizations and even domains.

CHAPTER 1. INTRODUCTION 4

In engineering, knowledge about best-practice solutions to frequently arising challenges is
often documented and represented using patterns. Broadly speaking, a pattern is “an idea
that has been useful in one practical context and will probably be useful in others” [11, p. 8].
In his seminal work, Alexander describes a pattern as a rule “which establishes a relationship
between a context, a system of forces which arises in that context, and a configuration
which allows these forces to resolve themselves in that context” [12, p. 253]. Alexander’s
comprehensive view on patterns echoes in the Gang of Four’s work on object-oriented
software design patterns, where a pattern “names, abstracts, and identifies the key aspects
of a common design structure that make it useful for creating a reusable object-oriented
design” [13, p. 4]. More recently, solution patterns have been employed in the field of
BI and analytics to support the development of machine learning applications [14], [15].
Hence, we propose to employ patterns in order to communicate and represent key aspects
of OLAP query composition to answer different types of information needs in specific data
analysis contexts under consideration of logical dependencies.

An OLAP pattern describes a generic solution for composing a query that allows a BI user to
satisfy a certain type of information need given fragments of a conceptual model, regardless
the concrete logical representation of a specific data warehouse. Each OLAP pattern is
characterized by a set of parameters and defines conditions at the conceptual level which a
multidimensional model has to satisfy in order for the pattern to be applicable to the model.
Furthermore, OLAP patterns may exist at multiple levels of abstraction, ranging from
domain-independent to domain- and organization-specific patterns. The boundaries are
fluid and the more specific patterns may derive from the more general patterns. Templates
for different target query languages and data warehouse systems link the pattern to its
implementation enabling automatic generation of queries and thus describe how a particular
information need specified over a conceptual model translates into an executable OLAP
query in the context of a particular data warehouse system.

In order to benefit from automatic query generation via OLAP patterns, users instantiate an
OLAP pattern by substituting parameters with elements from an enriched multidimensional
model (eMDM). The conceptual multidimensional model of a data warehouse system in
conjunction with the definitions of business terms constitute an eMDM. In this regard, the
definition of a business term includes a description as well as an expression for a target
language and system which allows users to employ business terms in queries. For example,
the business term Mid Lactation Phase in a dairy farming setting could be employed to
select facts of interest concerning animals in their phase of high milk output, while the
business term Frequent Patient in a health insurance setting could be employed to select
facts of interest concerning persons frequently visiting general practitioners within a year.

CHAPTER 1. INTRODUCTION 5

The idea of OLAP patterns was first developed in the course of the agriProKnow project
– while also drawing from experience in previous projects [5], [6] – in order to deal with
uncertainties regarding the stakeholders’ requirements with respect to the OLAP queries
that would have to be composed [2]. The agriProKnow project was a joint research
and development effort between industry and academia to design and implement a data
warehouse for precision dairy farming, integrating sensor data as well as available operational
databases [4]. During requirements elicitation, when it came to identifying interesting
business questions we faced stakeholders who were vague regarding the required queries
that would have to be composed eventually, partly due to uncertainties concerning the
data warehouse’s still evolving schema. The project’s rather strict schedule and budget,
however, meant that shifting effort for the implementation of queries to later stages was
only possible to a limited extent. Thus, in order to reduce effort in later stages, we
started developing a user interface for query composition based on domain-independent
OLAP patterns. The reasoning was simple: Domain-independent OLAP patterns represent
abstract solutions to specific types of information needs and, therefore, future domain- and
organization-specific information needs can be satisfied by adapting the abstract solutions
to suit the current situation without composing them from scratch. Identification of domain-
independent OLAP patterns was grounded in experience from previous research projects,
e.g., the Semantic Cockpit project [5] in the health care domain. Obtaining patterns from
practical experience is a common approach in the pattern community: Patterns are primarily
identified in a practical context rather than being the result of scientific invention [11, p. 7].
Based on domain-independent patterns, patterns specific to dairy farming and, ultimately,
patterns and queries specific to the agriProKnow project’s demonstration farms could later
be defined and operationalized with small effort. One such domain-independent pattern
was set-to-complement comparison, where a set of facts is compared with all other facts in
the same grouping. In the dairy farming domain, set-to-complement comparison frequently
takes the form of comparing a group of animals having a certain characteristic within a farm
to all the other animals within that same farm. Ultimately, the pattern-based approach
turned out to be successful in the agriProKnow project, as most of the required queries
could be expressed using previously identified OLAP patterns.

1.3 Contributions

In this thesis, we carefully revise and significantly extend our previous work on OLAP
patterns [1], [2], which established the basic notion of OLAP patterns and was later applied
in the context of linked open data on the semantic web [16]. The original pattern-based
approach to data analysis was developed in an ad hoc manner, out of necessity, tailored to
the specific needs of the agriProKnow project – a byproduct to cope with the uncertainties

CHAPTER 1. INTRODUCTION 6

related to the project’s requirements. This thesis presents a formal definition of OLAP
patterns as well as a more expressive, flexible, and generally applicable conceptualization
and definition language while relaxing some of the original restrictions and assumptions. In
particular, the contributions presented in this thesis are as follows:

1. Formal definition of eMDMs and OLAP patterns. A consistent formal definition
of the notions of enriched multidimensional model and OLAP patterns is provided.
This includes the definition of necessary constructs for representing multidimensional
models and various types of business terms defined on top of those multidimensional
models as well as constructs for representing OLAP patterns.

2. Formalization of OLAP pattern usage. A formalization of the necessary steps to
use patterns with respect to an associated eMDM is provided. For this purpose, the
instantiation of a pattern, its grounding, and subsequent execution in the context of
an eMDM are formally defined. Furthermore, the conditions of a pattern are defined,
which describe when the pattern is applicable to an associated eMDM and thus also
executable.

3. Language to define eMDMs as well as to define and use OLAP patterns. We
introduce a language for creating and deleting eMDMs and OLAP patterns. This
language also supports statements for using and organizing patterns.

4. Graphical notation for illustration of eMDMs and OLAP patterns. A visual
notation is provided to facilitate communication between stakeholders. The graphical
representation of elements of multidimensional models, business terms, and patterns
follows design principles to achieve a cognitively effective visualization.

5. Means for the organization of patterns. The organization of patterns into
organization-specific, domain-specific, and domain-independent patterns is described
to enable the knowledge transfer within organizations and domains as well as across
domains. This comprises the definition of a mechanism for the systematic derivation
of patterns from other, more generic patterns.

6. Prototypical implementation of the core OLAP pattern approach. The pattern-
based approach to multidimensional data analysis is realized by a prototype that
facilitates the definition and organization of eMDMs and patterns as well as the usage
of patterns. To this end, the prototype interprets statements that are formulated in
the introduced language in order to execute the corresponding actions.

The OLAP pattern approach developed in the course of agriProKnow was limited to enriched
multidimensional models in which each element was uniquely named, but this proved to

CHAPTER 1. INTRODUCTION 7

be too rigid in general for other practical applications. Therefore, the presented approach
assumes a relaxed unique name assumption, thereby increasing the practical relevance of
the presented pattern-based approach to data analysis.

1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2 – The Pattern-Based Approach in a Nutshell sketches our pattern-based
approach to multidimensional data analysis by detailing the steps necessary to define OLAP
patterns and to use them in a certain context. To this end, both pattern definition and
usage are exemplified by introducing a running example from the domain of precision dairy
farming.

Chapter 3 – Related Work reviews classical and more recent work on patterns in general,
approaches for (language-specific) pattern-based data analysis, and visual and model-driven
analytics approaches.

Chapter 4 – Enriched Multidimensional Models defines the notion of the enriched
multidimensional model by formalizing the elements of a multidimensional model and the
business terms that can be defined on top of the multidimensional model. Furthermore,
the application of business terms to a multidimensional model and the validity of this
application are described in detail. The chapter ends with the introduction of a graphical
notation to visualize the introduced concepts.

Chapter 5 – Pattern Definition defines the structure of OLAP patterns. To this end,
pattern variables, derivation rules, local cubes, and pattern constraints are introduced.
In addition, it also defines the conditions that characterise a well-formed OLAP pattern.
Finally, a graphical notation to visualize OLAP patterns and its elements is presented.

Chapter 6 – Pattern Usage formalizes the steps that are necessary to use patterns in
the context of an associated enriched multidimensional model. This covers instantiation,
grounding, and execution of patterns.

Chapter 7 – Pattern Organization describes how OLAP patterns and corresponding ele-
ments of an enriched multidimensional model can be organized on the domain-independent,
domain-specific, and organization-specific level of abstraction. It also describes how OLAP

CHAPTER 1. INTRODUCTION 8

patterns and elements of an enriched multidimensional model can be grouped in partic-
ular fields of applications by defining pattern catalogs, business term vocabularies, and
multidimensional models containing cubes and dimensions.

Chapter 8 – Proof-of-Concept Prototype presents a prototype implementation that
allows to manage and use OLAP patterns and enriched multidimensional models by formu-
lating statements that adhere to the introduced pattern language. To this end, the overall
architecture with its components is outlined and the provided functionality is discussed.
Finally, it is shown how the agriProKnow use case (running example) can be realized using
the prototype implementation.

Chapter 9 – Evaluation evaluates the presented pattern-based approach to multidi-
mensional data analysis by discussing practical relevance and expressiveness. In addition,
the approach is evaluated against a framework for assessing the quality of domain-specific
languages.

Chapter 10 – Extensions describes extensions that can be introduced to enhance the
core pattern-based approach to multidimensional data analysis. Possible extensions include
composite types and collections, optional variables, generic business terms, and enhanced
value set descriptions.

Chapter 11 – Conclusion summarizes and discusses the presented pattern-based approach
to multidimensional data analysis.

Chapter 2
The Pattern-Based Approach in a

Nutshell

In this chapter we outline the pattern-based approach to multidimensional data analysis in
Section 2.1 by describing the steps necessary to define OLAP patterns and the subsequent
steps for using OLAP patterns in general. Following this, in Section 2.2 we present a running
example from the dairy industry to describe how an appropriately enriched multidimensional
model can be defined. Based on this, we define a pattern specific to this domain and show
how it can be used with regard to the defined enriched multidimensional model.

2.1 Pattern Definition and Usage

OLAP patterns are a means of documentation for best-practice solutions regarding query
composition – with support for automatic query generation. Therefore, the proposed pattern-
based approach to multidimensional data analysis distinguishes two separate activities:
Pattern definition and pattern usage. Pattern definition comprises bottom-up specification
of patterns in the context of a specific data warehouse system as well as top-down derivation
of more specific patterns from more general patterns in a catalog. Pattern usage, on the
other hand, requires the pattern user to bind values to pattern parameters, which allows for
the subsequent grounding and execution of the pattern in the context of a specific data
warehouse system. Different business intelligence users are involved in the course of pattern
definition and usage [17]. While pattern definition will typically involve pattern authors
with a profound BI understanding at least to some extent, such as IT developers, data
engineers, and data scientists, pattern usage directly concerns the pattern users with a basic
BI understanding, such as decision makers, domain experts, business analysts, and power
users (see Figure 2.1). In this sense, OLAP patterns serve to communicate knowledge of
best-practice solutions for satisfying generic types of information needs from experienced

9

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 10

pattern authors to pattern users. It should be noted that a person can assume both the
role of a pattern author and pattern user.

Business Intelligence
Users

 Pattern Users
 (e.g. Domain Experts, Decision Makers,

 Business Analysts, Power Users)

Pattern Authors
(e.g. IT Developers, Data Engineers,

Data Scientists)

Figure 2.1: Venn diagram of the roles of the pattern-based approach to multidimensional
data analysis

In addition, OLAP patterns could facilitate communication between users by fostering a
shared understanding of best practices to be followed in order to satisfy a certain type of
information need. A catalog of OLAP patterns allows users to communicate solutions for
specific information needs without having to describe the query composition process in
detail. In this way, OLAP patterns can make it easier for users to interpret analytical results
obtained through the application of a specific OLAP pattern. When using traditional reports,
a user can assume that the analytical results were obtained with predefined procedures
that do not change, thus reducing the cognitive effort required to interpret the results once
they are understood. OLAP patterns present all of those advantages but, in contrast to
traditional reports, OLAP patterns do not rely on specific, individual OLAP queries.

The definition of an OLAP pattern includes (i) textual descriptions, (ii) a context spe-
cification, and (iii) query templates. As with software design patterns [13], the textual
description helps to communicate the problem to be solved and the solution to be followed.
In particular, the textual descriptions consist of a list of alias names for the pattern, a
statement of the (analytical) problem tackled by the pattern, and a description of the
solution. The context specification, in turn, generically describes the environment which
the pattern can be applied in; it should be noted that the multidimensional query to be
composed is not conceptually represented such as in Varga et al. [18]. In particular, the
context specification comprises a declaration of pattern parameters as well as constraints,
which the enriched multidimensional model of a data warehouse must satisfy in order for the
pattern to be applicable in the context of that data warehouse. Furthermore, the context
specification comprises definitions of auxiliary constructs and the schemas of intermediary
results, i.e., derived elements and local cubes, respectively. These constraints, derived
elements with corresponding derivation rules, and local cubes can be classified as different

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 11

types of business rules according to Hay et al. business rules [19]; constraints correspond
to action and structure assertions, derived elements correspond to derivations, and local
cubes correspond to structure assertions. In analogy to software design patterns [13], which
can be implemented using different object-oriented languages, an OLAP pattern’s query
templates are realizations in various target query languages, taking into account the type
of database (relational or other), the modeling paradigm (star or snowflake schema), and
the specific database management system. A pattern template is an expression that is
interspersed with placeholders for pattern parameters and derived elements as well as macro
calls. Templates may serve as blueprints for manually writing executable queries, that is,
templates link the pattern to its implementation. More importantly, however, templates
allow for automatic generation of a query that is executable in a target system. In this
thesis, we focus on SQL as a target language over a relational data warehouse following
the star schema modeling paradigm. Previous work demonstrated feasibility of adopting
the pattern-based approach for the analysis of linked open data using SPARQL as a target
language over RDF data [16].

Data Warehouse
System

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Business Term
Definition

...

...

...

...

Business
Term

...

...

...

...
...

...

Enriched Multidimensional
Model

Pattern

Multidimensional
Model Definition

Multidimensional
Model

Pattern
Definition

combination activity

Typical Types of
 Information Needs

Occurring
 Information Needs

Ad hoc Query
Composition

interaction

Figure 2.2: General steps of a pattern author in the pattern definition process

Patterns are usually discovered rather than invented [11, p. 7]: The challenge lies in
abstracting the essential structure of queries and logical data models without losing the
wholeness [20, p. 49] – too specific patterns have a limited scope, while too general patterns
are difficult to apply in concrete analysis situations. Starting from the logical data model
of a specific data warehouse system, patterns may be specified in a bottom-up manner by
abstracting the structure of the logical data model and the typical analytical queries to obtain
a generic query pattern at a higher level of abstraction (see Figure 2.2). First, the logical
data model can be relational or other. Therefore, a conceptual representation of the logical

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 12

schema of the data serves as the basis for pattern definition, which fosters reusability of the
identified patterns. In addition to the conceptual multidimensional model, the pattern-based
approach relies on the unambiguous definitions of business terms, i.e., the multidimensional
model is enriched with business term definitions and becomes an enriched multidimensional
model (eMDM). Each business term is either applied to cubes or dimensions and can
represent different query functionality, i.e., calculated measures, predicates, groupings, or
orderings. Business terms and multidimensional model elements in an eMDM represent
vocabulary used in day-to-day operations with expressions specifying the meaning of the
business terms in a way that can be operationalized for query composition, hence, users may
employ the vocabulary to instantiate the patterns. Business terms are thus characterized
by expressions for a target language and state conditions that cubes and dimensions must
satisfy in order for a specific business term to be applicable. Domain ontologies, e.g.,
AGROVOC [21] in dairy farming or SNOMED CT [22] in the health insurance domain, may
form the basis for the definition of a vocabulary of business terms [23].

outputinput context

Data Warehouse System

Pattern
Instantiation

Pattern

Parameter
Binding

Parameter-Free
Pattern

Applicable Ground
Pattern

Enriched Multidimensional Model

Analysis
ResultPattern

Grounding
Pattern

Execution
OLAP Query
Processing

OLAP
Query

Derived Element
Binding

Macro
Binding

operation

Figure 2.3: General steps of a pattern user in the pattern usage process

Figure 2.3 shows the necessary steps to put to use once defined patterns that have
a corresponding query template attached. Users instantiate a pattern by binding the
parameters with names of elements (arguments) from an eMDM. Partial instantiation of a
pattern, i.e., binding only a subset of the pattern’s parameters, yields a more specific pattern,
which can be kept for later reuse, constituting a case of top-down derivation of more specific
patterns from more general patterns. Ultimately, the result of (possibly repeated) pattern
instantiation is a parameter-free pattern. In the absence of derived elements, a pattern with
all parameters bound is also ground, i.e., pattern grounding can be omitted. Otherwise,
in order to obtain a ground pattern, a parameter-free pattern undergoes the process of
pattern grounding, i.e., existing derivation rules for derived elements are evaluated over
an eMDM to determine the values to be bound to the corresponding derived elements.
A ground pattern is applicable in the context of a data warehouse system if all of the
pattern’s constraints can be satisfied in the eMDM and all business terms applied to cubes
or dimensions are valid business term applications. Execution of a ground pattern over an

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 13

eMDM of a data warehouse in the context of which the pattern is applicable then produces
an OLAP query, which is processed by the data warehouse system to obtain an analysis
result. During pattern execution, macro calls in the attached query templates employ the
variable bindings in order to obtain code snippets in a target language which are substituted
for the macro calls in the corresponding pattern template.

2.2 Running Example

In the following, we illustrate the pattern-based approach using the setting of precision
dairy farming inspired by our own experience in the agriProKnow project; the setting serves
as running example throughout the thesis. Consider (fictitious) dairy company Happy
Milk, which consists of three farms located at different sites, tending to a herd of about
a thousand animals in total, approximately half of which are Holstein breed, the other
half Jersey breed. Happy Milk runs its farms as precision dairy farming operations [24]
aiming to increase efficiency and reduce losses due to animal illness through monitoring
the animals’ health status and proactively induce necessary treatments. In precision dairy
farming, animals are typically monitored using a wide range of sensors capturing a multitude
of data concerning, e.g., microclimate in the barns (temperature and moisture, among
others), animal movement within farms, food consumption, milk yield and composition of
the produced milk, and information about calvings. In the example setting, data gathered
by various sensors are integrated into a relational data warehouse system realized using a
star schema which is conceptually represented using entities, i.e., cubes and dimensions,
and properties, i.e., measures, dimension roles, levels, and attributes, in a multidimensional
model.

Figure 2.4 shows an example Milking cube similar to an actual cube developed for the
agriProKnow project, using a notation that is based on the Dimension Fact Model [25]
where boxes denote cubes, circles denote levels, and lines between circles denote roll-up
relationships; levels are grouped into dimensions, which are represented as a gray area.
The Milking cube captures, for analysis purposes, aggregated data about milking events
quantified by the measure Milk Yield (in liters) and Fat Content (as percentage); value
sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat Content,
respectively. Milking refers to the Animal dimension via the Cattle dimension role, Time

dimension via the Milking Time role, Lactation dimension via the Lactation dimension role,
Calving dimension via the Calving role, and Farm dimension via the Farm role. Hence, the
cube records milk yield and fat content on a daily basis per animal and farm as well as
calving period and phase in the animal’s lactation cycle. The dimensions have multiple
levels and attributes – each of which is associated with a value set (see [26] for more

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 14

Lactation

Date:
Date

Month:
Month No

Year:
Year No

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Milking Time Milking Time Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

FarmFarm
CattleCattle

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Time

Enterprise Id: Ssn

Calving LactationLactation

Day Of Lactation:
No Of Days

CalvingCalving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

Month Label:
Month Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

Figure 2.4: The milking cube of the multidimensional model of the Happy Milk data
warehouse system

information on value sets) – which allow for further aggregation and selection of subsets of
the data. For example, the Animal dimension has an Animal level, the values of which are
taken from the Animal Code value set. The Animal level is further described by an attribute
Animal Name from the Name value set. The Animal level rolls up to levels Dam (mother animal),
Main Breed, and Date of Birth.

Even though Happy Milk maintains a multitude of reports for monitoring and controlling the
dairy herd, covering all future information needs by predefined reports alone is impossible.
Relying on reports is not enough because they are limited by the underlying query and
thus not all information needs that arise can be covered by predefined reports, because not
every analysis situation can be identified beforehand – only about 60-80% of all arising
information needs can typically be satisfied by reports [27, p. 19]. Thus the scope of a
predefined report is limited and the composition of ad hoc OLAP queries will eventually
become necessary. Parameterized reports somewhat alleviate the problem but still lack the
flexibility of ad hoc querying. Happy Milk’s users with a basic BI understanding, for example,
can be assumed to understand the multidimensional model to some degree but have only a
basic understanding of the underlying data warehouse system and the corresponding query
language. The composition of ad hoc OLAP queries, however, is a challenging task as
it requires a profound understanding of the query language, the data warehouse system,
and the specific multidimensional model. For example, to perform a comparison of the
average milk yield of two distinct groups of cattle of a certain breed, a BI user has to
specify selection conditions defining the two groups, obtain the average milk yield for each
group at the desired granularity level, and relate the groups using the appropriate join
condition before comparing the milk yield by calculating a comparative measure such as
the ratio between one group’s average milk yield and the other’s. Thus, users with basic BI
understanding will typically require further assistance for ad hoc query composition.

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 15

Figure 2.5: Breed-specific subset-subset comparison pattern’s aliases, problem, and context

Breed-Specific Subset-Subset Comparison

Also Known As
Breed-Specific Cattle Group to Cattle Group Comparison

Problem
Retrieve aggregated measure values for two specified groups of facts about cattle relating

to a specific breed from a single source cube, which should be compared by calculating a
comparative measure.

Context
1 PARAMETERS
2 <sourceCube >:CUBE;
3 <baseCubeSlice >: UNARY_CUBE_PREDICATE;
4 <baseDimSlice >: UNARY_DIMENSION_PREDICATE;
5 <compDimRole >: DIMENSION_ROLE;
6 <iDimSlice >: UNARY_DIMENSION_PREDICATE;
7 <cDimSlice >: UNARY_DIMENSION_PREDICATE;
8 <joinDimRole >: DIMENSION_ROLE;
9 <groupCond >: DIMENSION_GROUPING;

10 <cubeMeasure >: UNARY_CALCULATED_MEASURE;
11 <compMeasure >: BINARY_CALCULATED_MEASURE;
12 END PARAMETERS;
13
14 DERIVED ELEMENTS
15 <baseDim >: DIMENSION <= <sourceCube >."Cattle";
16 <compDim >: DIMENSION <= <sourceCube >.<compDimRole >;
17 <joinDim >: DIMENSION <= <sourceCube >.<joinDimRole >;
18 <cubeMeasureDom >: NUMBER_VALUE_SET <= <cubeMeasure >. RETURNS;
19 END DERIVED ELEMENTS;
20
21 LOCAL CUBES
22 "interestCube":CUBE;
23 "interestCube" HAS MEASURE <cubeMeasure >;
24 "interestCube".<cubeMeasure >:<cubeMeasureDom >;
25 "comparisonCube":CUBE;
26 "comparisonCube" HAS MEASURE <cubeMeasure >;
27 "comparisonCube".<cubeMeasure >:<cubeMeasureDom >;
28 END LOCAL CUBES;
29
30 CONSTRAINTS
31 <sourceCube > HAS DIMENSION_ROLE "Cattle";
32 <sourceCube > HAS DIMENSION_ROLE <compDimRole >;
33 <sourceCube > HAS DIMENSION_ROLE <joinDimRole >;
34 <sourceCube >."Cattle":<baseDim >;
35 <baseDim > HAS LEVEL "Main Breed";
36 <baseDim >."Main Breed":"Breed Name";
37 <sourceCube >.<compDimRole >:<compDim >;
38 <sourceCube >.<joinDimRole >:<joinDim >;
39 <baseDimSlice > IS_APPLICABLE_TO <baseDim >;
40 <baseCubeSlice > IS_APPLICABLE_TO <sourceCube >;
41 <iDimSlice > IS_APPLICABLE_TO <compDim >;
42 <cDimSlice > IS_APPLICABLE_TO <compDim >;
43 <groupCond > IS_APPLICABLE_TO <joinDim >;
44 <cubeMeasure > IS_APPLICABLE_TO <sourceCube >;
45 <compMeasure > IS_APPLICABLE_TO ("interestCube","comparisonCube");
46 END CONSTRAINTS;

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 16

Figure 2.6: Breed-specific subset-subset comparison pattern with its solution and a template
(continued from Figure 2.5)

Solution

From the ⟨sourceCube⟩, select the set of relevant facts using the unary cube
predicate ⟨baseCubeSlice⟩ and dimension predicate ⟨baseDimSlice⟩, which selects
over the Main Breed level of a dimension ⟨baseDim⟩ referenced by the dimen-
sion role Cattle – the result serves as the base cube for further analysis.

Interest
Cube

Comparison
Cube

σ

σ
Query
Result

σ

Base
Cube

<sourceCube>

From that base cube, select interest cube and comparison
cube using conditions over the dimension role ⟨compDimRole⟩
according to the unary dimension predicates ⟨iDimSlice⟩ and
⟨cDimSlice⟩, respectively. Perform a roll-up for interest and
comparison cube according to the ⟨groupCond⟩ dimension group-
ing over the ⟨joinDim⟩ dimension referenced by the dimension
role ⟨joinDimRole⟩ and compute a unary calculated measure
⟨cubeMeasure⟩. To obtain the query result cube, join the in-
terest cube and comparison cube over the ⟨groupCond⟩ dimension grouping and compute a
binary calculated comparative measure ⟨compMeasure⟩.

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc
4 JOIN <baseDim > a ON
5 sc."Cattle"=a.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, a)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc
13 JOIN <joinDim > jd ON
14 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
15 JOIN <compDim > cd ON
16 bc.<compDimRole >=cd.$dimKey(<compDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 comparisonCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc
24 JOIN <joinDim > jd ON
25 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
26 JOIN <compDim > cd ON
27 bc.<compDimRole >=cd.$dimKey(<compDim >)
28 WHERE $expr(<cDimSlice >, cd)
29 GROUP BY $expr(<groupCond >, jd)
30)
31 SELECT $expr(<groupCond >, ic),
32 ic.<cubeMeasure > AS "Group of Interest",
33 cc.<cubeMeasure > AS "Group of Comparison",
34 $expr(<compMeasure >, ic, cc) AS <compMeasure >
35 FROM interestCube ic
36 JOIN comparisonCube cc ON
37 $expr(<groupCond >, ic)=$expr(<groupCond >, cc)

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 17

At this point, we explain the intuition of pattern definition and usage over the example of
a specific OLAP pattern in order to foster a general understanding of the pattern-based
approach while referring to later sections for a formal definition. From previous experience,
Happy Milk’s pattern authors together with the future pattern users identify breed-specific
subset-subset comparison of cattle to be relevant in future analysis situations, leading to the
definition of a breed-specific subset-subset comparison pattern (see Figure 2.5 and Figure 2.6,
and Appendix C for the complete agriProKnow use case). This pattern describes how to
compose breed-specific comparisons, i.e., comparisons of measure values of two groups
of facts from a single cube, restricted to a specified breed. Breed-specific subset-subset
comparison is characterized by a number of pattern parameters as well as derived elements
and local cubes, which are defined in the Context part of the definition. The ⟨sourceCube⟩
parameter represents the cube that provides the facts for the analysis (Figure 2.5—Context,
Line 2). Constraints restrict valid arguments for ⟨sourceCube⟩ to cubes having a dimension
role Cattle (Line 31) that refers to a dimension represented by the derived element ⟨baseDim⟩
(Line 34) that contains a level Main Breed (Line 35) of type Breed Name (Line 36). The name
of the dimension referenced by ⟨sourceCube⟩ via Cattle is then also referred to as ⟨baseDim⟩
(Line 15). The ⟨baseDimSlice⟩ parameter represents a unary dimension predicate, which
restricts dimension property values, i.e., level and attribute values (Line 4), and that must be
applicable to the dimension ⟨baseDim⟩ (Line 39), e.g., a restriction of Main Breed to Holstein.
Thus, using a unary dimension predicate defined over Main Breed will be a valid argument
for the ⟨baseDimSlice⟩ parameter. The ⟨baseCubeSlice⟩ parameter represents a unary cube
predicate (Line 3) that filters the considered facts from the source cube by measure and
dimension role value, e.g., to select only those facts where the fat content exceeds a
certain threshold. The actual unary cube predicate supplied for ⟨baseCubeSlice⟩ must
be applicable to ⟨sourceCube⟩ (Line 40), e.g., the ⟨sourceCube⟩ must have a Fat Content

measure in order for a unary cube predicate that restricts by Fat Content to be a valid
argument for the ⟨baseCubeSlice⟩ parameter. Both ⟨baseDimSlice⟩ and ⟨baseCubeSlice⟩
serve to restrict the base facts used for the analysis. The ⟨compDimRole⟩ parameter then
represents the dimension role (Line 5) of the ⟨sourceCube⟩ (Line 32) used to define the
facts of interest and the facts of comparison. The name of the dimension referenced by
⟨sourceCube⟩ via ⟨compDimRole⟩ is then also referred to as ⟨compDim⟩ (Line 37 and Line 16).
The ⟨iDimSlice⟩ and ⟨cDimSlice⟩ parameters (Lines 6-7) represent the unary dimension
predicates over dimensions that serve to make the actual selection of facts of interest
and facts of comparison, respectively; the unary dimension predicates must be applicable
to ⟨compDim⟩ (Lines 41-42). The name of the dimension referenced by ⟨sourceCube⟩ via
⟨joinDimRole⟩ (Line 8 and Line 33) is also referred to as ⟨joinDim⟩ (Line 38 and Line 17).
The ⟨groupCond⟩ parameter (Line 9) represents a dimension grouping condition used to

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 18

perform a roll-up (aggregate) of the facts of interest and comparison, which must be
applicable to the ⟨joinDim⟩ dimension (Line 43). The parameter ⟨cubeMeasure⟩ (Line 10)
represents the unary calculated measure calculated for the aggregated facts of interest and
comparison based on the facts of the cube represented by ⟨sourceCube⟩ (Line 44). The
thus obtained facts of interest and facts of comparison are retrieved by subqueries in the
underlying template(s) and are represented as the interestCube local cube (Line 22) and
the comparisonCube local cube (Line 25), respectively, which both have a measure that has
the same name and domain as ⟨cubeMeasure⟩ (Lines 23-24 and Lines 26-27). A local cube
specifies the expected schema of the result returned by a certain subquery in the template(s)
relative to the dynamically bound values of parameters; local cubes facilitate the definition
of queries and increase expressiveness of the pattern-based approach. The derived element
⟨cubeMeasureDom⟩ (Line 18) represents the returned domain of ⟨cubeMeasure⟩ which serves
to declare the measure of the local cubes (Line 24 and Line 27). Finally, the ⟨compMeasure⟩
(Line 11) represents a comparative measure applied to the ⟨cubeMeasure⟩ values contained
in the interestCube and comparisonCube local cubes (Line 45). Pattern parameters, derived
elements, and local cubes then have to be arranged within an OLAP query in a meaningful
way to obtain the desired results.

In what way the pattern parameters, derived elements, and local cubes must be arranged
within an OLAP query is defined informally in the Solution part and more formally in the
Template part of the pattern definition. The example template in Figure 2.6 employs
SQL in the Oracle dialect and is specific to a relational star schema implementation that
obeys certain conventions; it should be noted that quoted identifiers refer to case-sensitive
names of tables and columns. The template, at specific positions in the code, makes
reference to the pattern variables (pattern parameters or derived elements) defined in the
context specification, e.g., ⟨sourceCube⟩ is referenced in the FROM clause of a common
table expression (Figure 2.6—Template, Line 3). When instantiating the pattern, certain
references to pattern variables, e.g., ⟨sourceCube⟩, are simply replaced in the template by
the name bound to the respective variable while others are used as parameter bindings for
macro calls, which return a code snippet replacing the reference to the respective variable
in the template. For example, the $expr(⟨baseCubeSlice⟩, sc) macro call (Line 6) returns
the ground expression of the unary cube predicate referred to by the name bound to the
⟨baseCubeSlice⟩ parameter with the alias name of the cube bound to the ⟨sourceCube⟩
parameter in the pattern template. Table 2.1 describes the intuition of basic macros
employed in the example template in Figure 2.6.

The context specification clearly defines the conditions that must be met for a pattern
in order to be applicable in an eMDM. Following the design-by-contract metaphor from
software engineering [28], the specification of the context can be seen as a contract that

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 19

defines the conditions to be met. A pattern author ensures that an executable query based
on the pattern’s templates (Figure 2.5—Template) can be generated when the pattern
user instantiates the pattern with names of eMDM elements that satisfy the constraints.
It should be noted that the pattern author guarantees that the templates are formulated
correctly. In turn, a pattern user can expect to obtain an executable OLAP query by using
a particular OLAP pattern if names of eMDM elements of an associated eMDM are bound
that satisfy the pattern’s constraints.

Table 2.1: Basic macros for pattern templates

Macro Description

$expr The expression macro $expr(⟨term⟩, ⟨param1⟩,. . . ,⟨paramN⟩) expects the
name of a business term as its first parameter and one or more parameter
bindings, depending on the arity of the specified business term. The macro is
evaluated in the context of an enriched multidimensional model and returns an
expression snippet of the business term that matches the data model, language,
and dialect of the pattern template. The returned expression snippet corresponds
to the business term’s template with all variables substituted by the provided
parameter bindings according to the macro call.

$dimKey The dimension key macro $dimKey(⟨dim⟩) expects exactly one dimension name
as its parameter binding and is evaluated in the context of an enriched multidi-
mensional model to return the dimension’s base level, i.e., a level that is not a
parent level.

In order to fully benefit from the pattern-based approach, Happy Milk canonizes additional
business vocabulary used in day-to-day discussions and analyses by representing business
terms in an unambiguous manner. Consider, for example, the following business terms
with SQL expressions formulated in the Oracle dialect. First, the unary calculated measure
Average Milk Yield calculates the average milk yield from a cube with a Milk Yield

measure that captures Liquid In Liter values, which is represented by the expression
AVG(⟨ctx⟩."Milk Yield"), where the cube is referenced by the parameter ⟨ctx⟩. Second,
the binary calculated measure Average Milk Yield Ratio calculates the ratio of the average
milk yields from two cubes, each having an Average Milk Yield measure that captures
Liquid In Liter values, which is represented by the expression (⟨ctx⟩[1]."Average Milk

Yield"/⟨ctx⟩[2]."Average Milk Yield"), where the cubes are referenced by the parameter
⟨ctx⟩[1] and ⟨ctx⟩[2]. Third, the unary cube predicate Mid Lactation Phase limits the
milkings to animals after between 100 to 200 days of lactation from a cube with a Lactation

dimension role that captures No Of Days values, which is represented by the expression
⟨ctx⟩."Lactation" BETWEEN 100 AND 200, where the cube is referenced by the parameter

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 20

⟨ctx⟩. Finally, the unary dimension predicates Young Cattle and Old Cattle limit dimensions
with a Date Of Birth property to less than three or exactly three years or older, which
is represented by the expressions trunc((SYSDATE-⟨ctx⟩."Date Of Birth")/365.25)<3

and trunc((SYSDATE-⟨ctx⟩."Date Of Birth")/365.25)>=3, where the dimensions are
referenced via parameters ⟨ctx⟩. Other types of interesting business terms to be defined
for Happy Milk are dimensional groupings such as grouping per farm, dimension orderings
such as the ordering of facts about farms by town name in ascending order, selection of
high average milk yield ratios, and selection of animals that were under heat stress on a
particular date based on entries in a precomputed lookup cube.

1 INSTANTIATE PATTERN "Breed -Specific Subset -Subset Comparison" AS

2 "Dairy - and Breed -Specific Subset -Subset Comparison" WITH

3 <sourceCube > = "Milking",

4 <baseCubeSlice > = "Mid Lactation Phase",

5 <baseDimSlice > = "Holstein",

6 <compDimRole > = "Cattle",

7 <iDimSlice > = "Young Cattle",

8 <cDimSlice > = "Old Cattle",

9 <joinDimRole > = "Farm",

10 <groupCond > = "Per Farm",

11 <cubeMeasure > = "Average Milk Yield",

12 <compMeasure > = "Average Milk Yield Ratio";

Listing 2.1: Instantiation of the breed-specific subset-subset comparison in
Figure 2.5

Coming back to the Happy Milk scenario: Assume the company detects a drop in the milk
yield of Holstein cattle. A decrease in milk yield may have many reasons but, first of all,
the affected Holstein population must be identified. A BI user may start the investigation
by calculating the ratio between the average milk yield of young Holstein cattle and the
average milk yield of old Holstein cattle, considering only animals with in their mid lactation
phase. On a more abstract level, that query corresponds to breed-specific subset-subset
comparison: computation of a ratio between the average measure values for each subset of
facts referring to a certain breed – in this case, Holstein – where each group is distinguished
according to specified characteristics – in this case, young and old.

In order to obtain an executable OLAP query using the breed-specific subset-subset com-
parison pattern, the pattern user (BI user) simply binds names of available eMDM elements
for each pattern parameter in the course of pattern instantiation (Listing 2.1). In the
Happy Milk scenario, the cube name Milking, which in the Happy Milk eMDM refers
to a cube that captures milk yield at farms, is bound to ⟨sourceCube⟩ (Line 3). The

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 21

Milking cube in the Happy Milk eMDM has a dimension role Cattle that references a
dimension Animal as its domain and thus satisfies the domain and property constraints
defined for the cube to be bound to ⟨sourceCube⟩. The name Holstein, which refers to a
unary dimension predicate, is bound to the parameter ⟨baseDimSlice⟩ (Line 5) whereas the
unary cube predicate name Mid Lactation Phase is bound to the parameter ⟨baseCubeSlice⟩
(Line 4). The ⟨compDimRole⟩ parameter is set to the name Cattle (Line 6) since that role
refers to a dimension which can be used for further restriction. The groups of facts that
are to be compared are specified by the Young Cattle unary dimension predicate for the
⟨iDimSlice⟩ (Line 7) and the Old Cattle unary dimension predicate for the ⟨cDimSlice⟩
(Line 8). Since the groups should be compared per farm the Farm dimension role is specified
as the ⟨joinDimRole⟩ (Line 9) while the ⟨groupCond⟩ parameter is assigned the Per Farm

dimension grouping predicate (Line 10). The Average Milk Yield for the ⟨cubeMeasure⟩
(Line 11) indicates the unary calculated measure to be calculated per group. Finally, the
Average Milk Yield Ratio for the ⟨compMeasure⟩ (Line 12) indicates the comparative binary
calculated measure.

During pattern instantiation, when the pattern user binds values to all parameters, pattern
instantiation yields a parameter-free pattern but any derived elements remain unbound
until the fully instantiated pattern is grounded in the context of a particular eMDM. In
the Happy Milk scenario, with parameters for the breed-specific subset-subset comparison
bound as in the previous example, pattern grounding over the Happy Milk eMDM yields an
applicable ground pattern that is executed resulting in the SQL query shown in Listing 2.2,
which compares per farm the average milk yield of cattle younger than three years that are
in their mid lactation phase with cattle older than three years that are in their mid lactation
phase, by calculating the ratio over the average milk yield per group.

CHAPTER 2. THE PATTERN-BASED APPROACH IN A NUTSHELL 22

1 WITH baseCube AS (
2 SELECT *
3 FROM "Milking" sc
4 JOIN "Animal" a ON
5 sc."Cattle" = a."Animal"
6 WHERE sc."Lactation" BETWEEN 100 AND 200 AND
7 a."Main Breed" = "Holstein"
8),
9 interestCube AS (

10 SELECT jd."Farm Id",
11 AVG(bc."Milk Yield") AS "Average Milk Yield"
12 FROM baseCube bc
13 JOIN "Farm" jd ON
14 bc."Farm" = jd."Farm Id"
15 JOIN "Animal" cd ON
16 bc."Cattle" = cd."Animal"
17 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) <3
18 GROUP BY jd."Farm Id"
19),
20 comparisonCube AS (
21 SELECT jd."Farm Id",
22 AVG(bc."Milk Yield") AS "Average Milk Yield"
23 FROM baseCube bc
24 JOIN "Farm" jd ON
25 bc."Farm" = jd."Farm Id"
26 JOIN "Animal" cd ON
27 bc."Cattle" = cd."Animal"
28 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) >=3
29 GROUP BY jd."Farm Id"
30),
31 SELECT ic."Farm Id",
32 ic."Average Milk Yield" AS "Group of Interest",
33 cc."Average Milk Yield" AS "Group of Comparison",
34 (ic."Average Milk Yield"/cc."Average Milk Yield") AS

"Average Milk Yield Ratio"
35 FROM interestCube ic
36 JOIN comparisonCube cc ON
37 ic."Farm Id" = cc."Farm Id"

Listing 2.2: Executable OLAP query resulting from the instantiation of the breed-
specific subset-subset comparison

Chapter 3
Related Work

In this chapter, we first review existing literature on the notion of patterns and discuss the
origins of patterns and their application in different domains (Section 3.1). We continue
with an overview of patterns in data modeling (Section 3.2) before investigating the role
of patterns in data warehouse design (Section 3.2.1). In addition, we provide an overview
of pattern-based approaches to data analysis (Section 3.3). In this regard, we discuss
existing approaches to composing SQL queries based on query patterns (Section 3.3.1)
and pattern-based solutions for exploratory data analysis (Section 3.3.2). We conclude this
chapter with an overview of visualization- and model-driven techniques for data analysis
(Section 3.4). This chapter is based in parts on related work sections from our previous
publications [1], [2]. In summary, no related work covers in its entirety the functionality of
the pattern-based approach to multidimensional data analysis.

3.1 Patterns in General

The notion of patterns originates from the field of architecture, where Alexander recognized
that the character of places is given by the character of the patterns of events that occur
there, which in turn are interlocked with "geometric patterns in the space" [12, p. x].
Such geometric patterns should be considered in the design of buildings and regions in
order to maintain a livable environment for the people who inhabit these places [12, pp. x,
xi]. To this end, Alexander et al. define such geometric patterns as rules that describe
the relationship between the problem, the context in which the problem occurs, and the
solution to the problem in that context [29, p. xi]. Thus, a pattern provides instructions
to create buildings and regions that solve a recurring problem in a particular environment,
where the result may vary each time the pattern is applied in a certain context [12, p.
x-xii]. Furthermore, Alexander et al. define a pattern language consisting of 253 geometric
patterns [29, p. xi-xii]. Patterns in the pattern language are sorted in descending order by

23

CHAPTER 3. RELATED WORK 24

the scale level that is considered the context under consideration, i.e., the language consists
of patterns concerning entire regions or cities as well as patterns for specific rooms of a
building [29, p. xii]. This arrangement creates a hierarchy of patterns, allowing a larger
pattern to be broken down into smaller ones or viewed in the context of a higher-level
pattern [29, p. xii]. Finally, this hierarchy of patterns causes the application of one pattern
to potentially affect the application of other patterns, as it may change the context to be
considered, e.g., the application of larger patterns defines the context to be considered for
smaller patterns [12, p. xiv].

Since its inception by Alexander, the notion of patterns spread across multiple fields. Beck
and Cunningham were the first to introduce a kind of patterns to teach object-oriented
design for software development in the Smalltalk programming language [30]. To this
end, Beck and Cunningham introduced Class, Responsibility, and Collaboration (CRC)
cards to teach novices in object-oriented programming the Model-View-Control design
pattern [30]. The work of Beck and Cunningham [30] as well as Alexander et al. [12],
[29] thus laid the foundation for the development of the software design patterns by Coad
[31] as well as Gamma, Helm, Johnson, and Vlissides (also know as the Gang of Four, or
GoF) [13]. By identifying patterns in software design, the GoF developed a framework
of object-oriented design patterns to facilitate bottom-up design of software systems [13].
These design patterns thus act as building blocks that promote reuse and maintainability
throughout the design process. The presented software design patterns were defined in a
domain-independent manner to cover object-oriented designs in terms of design, structural,
and behavioral aspects [13]. These design patterns have also become accepted as a common
communication vocabulary during the software design process [13]. It should be noted
that patterns are distinct from frameworks, which provide the context for the employment
of reusable components, which in turn may be based on software design patterns [32].
Nevertheless, frameworks may represent reusable design in addition to mere code reuse,
depending on their scope and application area. To organize and drive efforts in pattern
development in the software engineering domain, the Pattern Languages of Programs
(PLoP) conference series was established.

Apart from patterns for software engineering, Coplien, who initially focused on software
patterns [33], proposed, in collaboration with Neil and Harrison, organizational patterns for
agile software development [34]. The definition of organizational patterns was inspired by
findings of Conway, who observed that the structure of software systems is to some extent
predetermined by the communication structures of the organization implementing those
communication structures [35]; that observation has since become known as Conway’s
Law. Based on Conway’s law and the fact that software design patterns [13] are concerned
with recurring structures within the software rather than the organization of software

CHAPTER 3. RELATED WORK 25

development, the catalog of organizational patterns introduced by Coplien et al. [34] aims
to improve the organization through permanent and incremental changes, while taking into
account the organization processes, the structure of the organization behind it, and the
principles and values that determine the organization’s identity [36]. This generative nature
of organizational patterns is similar to that of architectural patterns proposed by Alexander
et al. in that the application of the pattern changes the context, i.e., the organization. It is
worth noting that the organizational patterns of Coplien et al. [34] have laid the foundation
for the proliferation of agile software development.

In addition to the architectural and software engineering domain, the notion of pattern is
prevalent in other domains as well. In this context, Kohls’ extensive work on patterns in
general and specifically on the use of patterns in e-learning [20] is particularly noteworthy.
Furthermore, in the context of didactics, Muller and Haberman’s patterns are worth noting
[37], which are used to teach algorithms. For the design and development of business
rule management systems, Graham presents a pattern language [38]. In the context of
business process modeling, van der Aalst et al. identified workflow patterns [39]. A more
comprehensive overview of patterns in other domains is presented by Kohls [20, p. 18-19].

The pattern-based approach to multidimensional data analysis, does not share the generative
character of the patterns introduced by Alexander et al. [12] and Coplien et al. [34], since
the application of OLAP patterns does not lead to any change in the considered context,
i.e., the associated eMDM. Similarly to the software design patterns by Gamma et al. [13],
OLAP patterns can be defined in a domain-independent manner. Furthermore, OLAP
patterns can also be defined in a domain- and enterprise-specific manner, which allows
for pattern organization along different levels of abstraction. However, the hierarchical
organization of OLAP patterns must be distinguished from Alexander’s hierarchical pattern
organization [12], which unlike the hierarchical organization of OLAP patterns refers to a
composition of smaller patterns into larger patterns. OLAP patterns, on the other hand, are
organized based on their level of abstraction, i.e. their genericity, which allows for OLAP
patterns to be applied to different domains and companies. Still, multiple smaller patterns
could be defined within the same level of abstraction and then used as building blocks for
the composition of more complex patterns.

3.2 Data Modeling Patterns

In contrast to software design patterns, which focus primarily on the design of software,
Fowler [11] provides a catalog of analysis patterns that represent conceptual models “that
have been useful in one practical context and will probably be useful in others” [11, p. 8].
Thus, Fowler’s patterns of analysis focus on representing how people in a certain domain

CHAPTER 3. RELATED WORK 26

perceive their world [11, p. xvi]; the thus externalized mental models serve to understand
and simplify the problem. Although some analysis pattern may seem (in parts) trivial
at first glance, an enormous amount of work can be required to work them out during
the process of conceptual modeling to uncover the foundations of a problem [11]. Even
though Fowler follows an object-oriented modeling paradigm, Folwer does not focus on
the design of software, rather providing conceptual models of businesses [11, p. xv]. In
addition to analysis patterns, which are “groups of concepts that represent a common
concept in business modeling” [11, p. 8], Fowler also defines supporting patterns that
describe how to use and apply analysis patterns [11, p. 8]. In contrast to the patterns
described by Alexander et al. [29] and the GoF [13], Fowler discusses not just one but
several possible solutions to a problem in a given context in a way that does not follow the
pattern styles used by Alexander et al. and the GoF. Fowler’s patterns of analysis emerged
from a practical context and should be viewed as suggestions rather than prescriptions
[11, pp. 8, 12]. Nevertheless, Fowler acknowledges that analysis patterns can be applied
across domains since the patterns represent the (domain-independent) business and not the
software to be developed [11, p. 10].

Comparable to Fowler [11], Hay [40] defines conceptual models in a relational modeling
style. Hay identifies models across businesses and government agencies that can be
modeled in a standardized way [40, p. 4]. Hay’s focus is on identifying the fundamental
nature of enterprises and representing them in a readable format that in turn promotes
communication among users, analysts, and designers [40, p. 2]. To this end, Hay defines
modeling conventions, i.e., syntactic, positional, and semantic conventions that lead to
standardized model representations [40, p. 4-5, 10–22]. Data modeling patterns represented
in this way can be reused across multiple business domains, especially early in the modeling
process [40, p. 4]. Hay’s data modeling patterns promote – in addition to readability –
robustness to change and maintainability [40, p. 4]. Other authors, such as Silverston [41],
also in collaboration with Agnew [42], along with Blaha [43], Arlows [44], and Batra [45],
have identified and described other data modeling patterns at different levels of abstraction.
In particular, the work of Silverston and Agnew is noteworthy because they distinguish,
different levels of abstraction [41], from patterns for specific domains to domain-independent
patterns [42], [46]. It is also worth noting that Blaha identified antipatterns that should
be avoided during data modeling [43, p. 95-118]. Blaha also presents – in addition to
the domain-independent data modeling patterns – patterns for metamodels (canonical
models) [43, pp. 157–202]. In this context, more recently, Hay also published patterns
for metamodels for modeling data, activities, functions and processes, places, people and
organizations, and event and time data [47].

Similarly to Fowler’s analysis patterns, OLAP patterns have emerged from experiences

CHAPTER 3. RELATED WORK 27

of various industrial research projects. Another similarity to Fowler’s patterns is that the
pattern-based approach to multidimensional data analysis does not define strict prescriptions,
as OLAP patterns can be seen as a starting point for a particular analysis situation, offering
suggestions that can be followed to satisfy the information need at hand. Furthermore,
the cross-domain nature of analysis patterns identified by Fowler is also reflected in our
pattern-based approach by describing the context at a conceptual level rather than at a
logical level. In addition, our pattern-based approach to multidimensional data analysis
takes into account the levels of abstraction in modeling described by Silverston and Agnew,
which are addressed by enterprise-specific, domain-specific, and domain-independent OLAP
patterns. Similarly to the metamodels introduced by Blaha and Hay, we present a metamodel
for representing patterns in a multidimensional environment, where OLAP patterns are
instances of this model. Finally, it is worth noting that unlike Blaha’s antipatterns, our
OLAP patterns do not present practices to be avoided.

3.2.1 Data Warehouse Design Patterns

The idea of employing patterns in data modeling is not limited to the design and development
of online transaction processing (OLTP) systems for data in an operational environment (see
Inmon [48, p. 16-18] for more information on OLTP vs. OLAP). Rather, patterns can also
be employed for the design and development of OLAP systems or data warehouse systems.
Blaha describes the most commonly used design pattern for relational data warehouses, the
star schema [43, pp. 84–90]. Even though this design is well-known in the data warehouse
domain [48, p. 126-134] [49, p. 123-126], it has not been explicitly described as a pattern.
It is worth noting that the star schema (in addition to the snowflake schema [49, p. 121-127]
and combinations thereof) is a pattern for the logical design of relational data warehouses.
Similarly, Schneider and Forsch-Wilke claim to describe analysis patterns, but in fact present
logical relational design patterns for data warehouses [50].

Complementing Blaha, Silverston describes how data model patterns for specific industries,
i.e., multidimensional reference models, can be implemented in data warehouses [41, pp.
436-437] and which data model patterns for specific business events can be reused when
designing data warehouses [46, pp. 337-406]. Domain-specific data modeling patterns
for data warehouses are also a focus of the BIRD approach introduced by Schuetz et al.,
which provides a metamodel and process for adaptable multidimensional reference models
[6]. The BIRD approach is exemplified by the representation of a reference model for the
manufacturing domain, which is adapted for a specific company. Other multidimensional
reference models are presented in literature, e.g., by Zaiane et al. [51], who describe a data
modeling pattern for OLAP cubes to analyze web access, while Boulil et al. describe a data
modeling pattern for analysis of large and complex watercourse data [52].

CHAPTER 3. RELATED WORK 28

In addition to domain-specific and domain-independent reference data modeling patterns,
Viqarunnisa et al. [53] present 17 generic patterns for designing relational data warehouses,
ranging from trivial patterns describing the multiple use of dimensions via roles to more
complex patterns for dealing with changing dimensions. On top of relational design patterns,
Viqarunnisa et al. also define the data warehouse bus matrix pattern, which describes
how business goals can be linked to the design [53]. However, the patterns presented by
Viqarunnisa et al. are described only superficially and without using a pattern-specific style
[33]. A more in-depth description of patterns can be found in Corr [54, p. 163-254], who
describes patterns for agile data warehouse design. Corr identifies patterns for modeling
dimensions to represent entities (who and what), location and time (where and when),
cause and effects (why and how), and corresponding measurements (how many) [54, p.
163-254]. In contrast to Viqarunnisa et al., Corr also provides a detailed description of how
to implement the patterns [54, p. 163-254]. Similarly to Corr, Jones et al. also identify
modeling patterns for dimensions [55].

Finally, Poole et al. describe the Common Warehouse Metamodel (CWM), a standard
under the auspices of the Object Management Group (OMG), which is a comprehensive
metamodel on the description, access, and exchange of metadata generated during data
warehouse processes [56, p. 75-124]. The CWM serves as the basis for describing metadata
interchange patterns [56, p.138-168]. The CWM is intended to promote interoperability
between different data warehouse systems and applications, which is particularly important
when defining ETL processes across data warehouse systems.

The patterns in data warehouse design are to some extent relevant to the pattern-based
approach to multidimensional data analysis, as we conceptualize the data warehouse that
contains the data to be queried. Compared to Blaha and Schneider as well as Frosch-
Wilke, an enriched multidimensional model (eMDM) is described purely on the conceptual
level. Nevertheless, OLAP patterns assume that the underlying logical representation
follows certain conventions, e.g., a star schema implementation is assumed at the logical
level. However, providing additional mapping information would allow for the use of an
implementation using a snowflake schema. An eMDM in our pattern-based approach may
represent a reference model for a specific domain or may describe general dimensions, and
to some extent represent domain-independent cubes. Thus, the reference data modeling
patterns presented by Silverston as well as Schuetz et al. can be considered when describing
domain-specific patterns. In addition, on the domain-independent level, the universal
patterns of Silverston and Agnew, Blaha, and Corr can be considered. Unlike the patterns
presented by Viqarunnisa et al., our pattern-based approach does not describe how the
multidimensional model should be constructed or what should be considered. Furthermore,
no additional metadata for the data warehouse design process is captured in our metamodel.

CHAPTER 3. RELATED WORK 29

3.3 Data Analysis Patterns

The analysis of data within a data warehouse is limited to the cubes and dimensions that
capture the occurrence of different business events. For this reason, we restrict the notion of
data analysis in this section to the definition given by Zohuri and Moghaddam, who define
data analysis in the context of data warehouses as a “process for obtaining raw data and
converting it into information useful for decision-making by users” [57]. Therefore, to provide
useful information for decision making, data from various sources must be preprocessed as
part of an ETL routine and inserted into the data warehouse at the appropriate granularity.
Once the data warehouse is populated, analysis can be performed by composing OLAP
queries, defining reports (based on OLAP query templates), performing statistical analysis,
and data mining [58]. In the following, we review related work on the composition of
SQL queries in Section 3.3.1, followed by related work on pattern-based solutions for data
analysis in Section 3.3.2.

3.3.1 Query Formulation Using SQL Patterns

Previous research by Tropashko [59] and Al-Shuaily [60] investigates the transfer of SQL
knowledge in different contexts by introducing SQL patterns. Al-Shuaily introduces SQL
patterns for teaching SQL to novices, noting that novices lack the ability to abstract a
particular information need in order to map that information need to existing solution
strategies [60, p. 84]. Novices also lack problem solving skills, as they find it difficult
to divide an information need into sub-problems, and have difficulties in composing the
corresponding query [60, pp. 201-203]. The reasons for these issues can be found in a lack
of knowledge and experience as well as a missing understanding of basic SQL concepts.
The proposed SQL patterns by Al-Shuaily aim to tackle these drawbacks. Al-Shuaily
focuses on educational impacts of using SQL patterns to teach basic SQL, which is why
the proposed patterns, i.e., dynamic filtering, filter-by-existence, natural- and self-join, and
the grouping result pattern, focus on basic SQL query functionality. Nevertheless, the
proposed SQL patterns have a positive impact on the understanding of SQL as well as the
formulation, translation, and writing of queries [60, p. 300-331]. These SQL patterns are
described textually but also using figures and tables to illustrate the operations that are to
be performed. The textual description follows the common pattern style used by Alexander
et al. [29] and Gamma et al. [13], i.e., each pattern is named, an example is provided, the
problem and the context in which it occurs with possibles forces to consider are stated, the
solution is detailed, and finally, possible consequences to consider are specified. It should be
noted that Al-Shuaily’s SQL patterns focus on learning the basic SQL operations but without
focusing on the formal basics such as relational algebra. Therefore, in the pedagogical

CHAPTER 3. RELATED WORK 30

patterns described by Renaud and Biljon [61], which describe a process for teaching SQL,
Al-Shuaily’s SQL patterns can only be used as one step of many. Nonetheless, based on
Al-Shuaily’s work, Sundin and Cutts [62] further developed the pattern approach to teach
basic data analysis operations in SQL, in addition to Python and R. Sundin and Cutts aim
to teach novice users basic data science operations within a short session using cheat sheets,
which in turn provide patterns for basic operations with a linked implementation in the
target language. The available basic operations are represented by a set of seven symbols
used as placeholders in the corresponding language templates. Sundin and Cutts show that
most novices were able to solve the given task in the given time, with the unexpected result
that SQL queries were the easiest to formulate in the process [62].

Unlike Al-Shuaily as well as Sundin and Cutts, Tropashko proposes SQL patterns for an
expert audience. The SQL patterns described by Tropashko include not only the simple
use of conditional and concatenation operators but also workarounds for common SQL
problems as well as complex tasks such as handling trees and graphs in SQL, complex
constraints based on (user-defined) functions and materialized views, and the mapping of
statistical and mathematical questions in SQL [59]. Tropashko discusses common SQL
problems without following a classical pattern style but he describes for each problem the
underlying causes and multiple solutions. To this end, the reader is guided step by step to
understand the rationale behind the solution and how it can be formulated for a specific
use case. In contrast to Al-Shuaily’s patterns, Tropashko’s patterns are not designed to be
used in a pedagogical context but as a reference guide experienced users.

There are approaches that facilitate the identification of SQL patterns. Nagy and Cleve
sourced the online forum Stack Overflow for SQL queries to find SQL antipatterns by
applying data mining techniques [63]. Such SQL antipatterns are also described by Karwin
[64] and Dintyala et al. [65]. Dintyala et al. also propose an approach for automatic
detection and repair (to some degree) of antipatterns. It is worth noting that Renaud and
Biljon [61] advise against using antipatterns to teach SQL to novices, as this would lead
to misleading persisted mental models. Nevertheless, the same techniques for identifying
antipatterns could be used to find common solutions to certain types of information needs.
In addition to obtaining queries from public repositories, queries from benchmarks can also
be used as a basis to identify patterns. For example, the well-known benchmark of the
Transaction Processing Performance Council (TPC) for decision support systems (TPC-DS)
developed by Poess et al. [66], [67], can be considered since it allows common OLAP
queries to be generated based on 99 templates for a given use case. Identifying similar
groups of queries (or users) is also a field in recommender systems that aim to provide
users with appropriate queries for particular analysis situations. Common recommender
systems [68], [69] are used to suggest queries to a user based on the user’s previous query

CHAPTER 3. RELATED WORK 31

behavior (content-based) or on the behavior of similar users (collaborative).

Although Al-Shuaily shares some objectives with the pattern-based approach to multidi-
mensional data analysis, Al-Shuaily focuses on basic SQL query functionality without even
considering complex applications such as OLAP and data analysis. Moreover, neither the
SQL patterns presented by Al-Shuaily nor those presented by Nagy and Cleve as well as
Tropashko are grounded in formal definitions. In addition, Al-Shuaily’s patterns do not
support query generation as the query format is specified informally, i.e., constants and
variables are distinguished from keywords solely by using different fonts. Al-Shuaily lacks
constructs to represent optional expressions, also abstracted subqueries are simply specified
by an appropriate keyword [60, p. 433-442]. In contrast, Nagy and Cleve provide simple but
instantiable query templates, i.e., they replace operation symbols with specific values. This
approach is similar to OLAP pattern templates, which link the pattern to its implementation.
Nevertheless, Al-Shuaily as well as Nagay and Cleve lack the formality and flexibility of
OLAP patterns. Although the solutions (mostly written for Oracle) in Tropashko’s patterns
are described in general terms, they contain only specific queries without embedded variables
and macros. Tropashko also does not provide templates since automatic query generation
is not considered. Consequently, users must manually adapt the existing queries to their
current context, with all the potential pitfalls that can arise from such reuse of specific
queries (see for details Allen and Parson [3]). Furthermore, Tropashko does not consider the
data warehouse context, nor does Tropashko follow common styles for pattern description.
Instead, Tropashko discusses solutions along with specific examples.

3.3.2 Pattern-Based Approaches to Data Analysis

Nalchigar and Yu [14], [15] introduce solution patterns for machine learning to support
organizations with garnering business value by applying machine learning approaches. Nal-
chigar and Yu take into account typical business cases, i.e. credit approval, fraud detection,
or task assignment, which could be supported using machine learning strategies. The
proposed solution patterns are based on a conceptual framework for designing business
analytics, which consists of three views: business view, analytics design view, and data
preparation view. The business view allows to model an actor’s intention, i.e., to represent
strategic goals that can be achieved through decision making based on questions, which
in turn are answered by insights from available data. By representing an actor’s intent
from a business perspective, Nalchigar and Yu diverge from traditional representations
for patterns [33]. The analytics design view is used to facilitate the selection of suitable
approaches to analytical problems, while the data preparation view allows for the represent-
ation of data preparation tasks that apply a sequence of operators to entities to obtain the
data set of interest, i.e., integration, transformation, reduction, and cleaning tasks. In other

CHAPTER 3. RELATED WORK 32

words, the data preparation view allows for the representation of extraction, loading, and
transformation (ETL) processes based on a conceptual representation of the logical schema.
Since the solution patterns for machine learning, at least from a business perspective, focus
on generic tasks that may be of relevance in different domains, they can be considered
domain-independent. However, if a specific data preparation view is incorporated, it must
take into account existing data models, i.e., domain- and enterprise-specific models.

In statistics, data analysis patterns were defined by Unwin [70] to describe the methodology
of exploratory data analysis (EDA). These data analysis patterns aim at guiding users
through common data exploration tasks, focusing on graphical representation and helpful
transformations of the examined data, e.g., outlier detection and comparison of proportions.
Unwin organizes these analysis patterns at different levels of abstraction, depending on the
genericity of the EDA task being supported. For Unwin, the inclusion of human judgment
is essential to a pattern of analysis, which is why Unwin does not see patterns as strict
procedures but rather as guidelines. Unwin also views patterns as methods that cannot be
automated because they require human involvement.

In contrast to the business view of solution patterns proposed by Nalchigar and Yu, OLAP
patterns consider only the question (type) that needs to be answered, without addressing
broader decisions or strategic goals. Moreover, the analytics design view of solution patterns
finds no counterpart in the OLAP pattern approach. Nonetheless, such an analytics design
view could be useful for OLAP patterns, especially if several possible OLAP patterns can be
applied to satisfy a particular type of information need. The logical schema considered by
the data preparation view is also considered by our pattern-based approach through pattern
templates. These pattern templates link the OLAP pattern to its implementation, although
they are defined considering its conceptual representation. Unlike Unwin’s data analysis
patterns that supports EDA, OLAP patterns help users to answer specific questions that
arise in particular analysis situations. Similarly to OLAP patterns, Unwin’s data analysis
patterns are described by stating name, problem, solution, and examples but Unwin’s
data analysis patterns also describe the resulting context, the rationale behind the pattern,
and other related patterns [70]. Furthermore, Unwin acknowledges that patterns must be
organized along different levels of abstraction, pointing out that the assignment to these
levels is rather subjective.

3.4 Visual Analytics and Model-Driven Analytics

Analysis of multidimensional data can also be supported by specifying the query in other ways
than manually composing the query in a platform-specific language. Such query specification
can be supported by comprehensive visual interfaces or by explicit modeling of the desired

CHAPTER 3. RELATED WORK 33

query. In Section 3.4.1 we present work on specifying queries via graphical interfaces and
in Section 3.4.2 we review model-driven analysis approaches to query specification.

3.4.1 Visual Analytics Approaches

Frequently, a visual interface is employed for query composition, sparing the user the
intricacies of the underlying (multidimensional) data model. The Duet approach [71]
provides, for example, group comparison capabilities for data analysis novices. The idea
behind Duet is that novices have difficulties both in selecting strategies and in performing
low-level operations for group comparisons (execution barrier) and in interpreting the results,
i.e., the visualizations (interpretation barrier) [71]. Duet provides a visualization to define
the comparison according to a minimal specification approach, i.e., when a user specifies a
group, Duet suggests the most similar and different other groups, and when a user specifies
two groups, Duet suggests the most similar and different attributes between these groups
[71]. The result is visualized and enriched by a generated simple description to facilitate
interpretation.

The insights gained through the development of Duet led to the development of its successor
Duo, which aims to support pairwise comparisons of tabular data [72]. Duo is a spreadsheet
application that supports comparisons of exactly two groups by decomposing the pairwise
comparison into rules that follow a sloppy syntax, i.e., rules to define groups and rules to
define attributes to be compared [72]. During the development of Duo, Law et al. identified
types of comparisons by collecting questions from 398 unique crowd-workers who were
asked for interesting comparisons concerning eight fictitious situations, which resulted in a
taxonomy of pairwise comparisons [72]. The taxonomy classifies twelve types of pairwise
comparisons along three dimensions. First, the repetition dimension indicates whether an
object of interest is compared to another single object (simple one-to-one) or whether an
object of interest is considered a reference which multiple objects are compared with (simple
one-to-many). The group dimension indicates the comparison of an object group of interest
to a single object group (group one-to-one), an object group of interest to multiple other
object groups (group one-to-many), and multiple object groups of interest to multiple other
object groups (group many-to-many). Finally, the attribute dimension indicates whether or
not the attribute to be compared is explicitly specified [72]. The results were incorporated
into the design of Duo. Duo is not designed to be used in a data warehouse context which
requires, besides the ability to incorporate analytical functions, the dynamic definitions of
measures as well as join conditions. The aim of Law et al. is to support exploratory data
analysis by guiding novices through the comparison of groups.

Prior to Duet and Duo, Stolte and Hanrahan developed the query visualization interface

CHAPTER 3. RELATED WORK 34

Polaris [73], which led to the development of Tableau1. Polaris focuses on analyzing,
querying, and visualizing multidimensional relational databases, although newer versions
of Tableau support other data structures as well. Rather than focusing on ad hoc queries,
Polaris primarily supports exploratory data analysis by providing an interactive visualization
of both the query and the result. The query is defined by a visual specification within a
table-based interface that allows dimensions, measures as well as grouping and filter criteria
to be specified along with possible visualisation options. An underlying table algebra [73] is
used to generate the corresponding queries and, thus, queries can be formulated in an ad
hoc manner.

Based on Böhnlein’s preliminary work on the Semantic Data Warehouse Model (SDWM)
[74], Böhnlein et al. present an approach for visually specifying multidimensional queries
[75]. The SDWM represents data warehouses conceptually via measures and dimensions
and follows the idea that a potential user is primarily interested in measures and that
these can therefore be used as a starting point for the analysis. The visual specification of
a multidimensional query represents the elements of the underlying SDWM as graphical
elements by encoding the semantics using different shapes, colors, contours, and formats.

The SDWM-based approach allows users to be provided with visual templates based on
the SDWM, the templates serving as configurable reports [75]. Each of these templates
consists of predefined measures, dimensions, and dimension attributes that are related to
each other. The relationships between these template elements are visualized to represent
the dependencies between the measures and dimensions. The user specifies the OLAP
query by either adding/removing new measures or by selecting the dimension hierarchy
levels. Additivity checks are performed to restrict certain aggregations of measures along
specific dimensions.

In addition to the composition of queries, QueryViz, introduced by Danaparamita and
Gatterbauer [76] and evaluated by Leventidis et al. [77], is a visualization-based approach
to represent and understand the meaning of existing SQL queries [77]. The visualization is
thereby based on a logical representation of SQL queries – following the first-order logic
foundation of SQL – and can be generated by simply providing a textual representation of
the SQL query and relevant schema fragments [76], [77]. Although SQL allows a logical
statement to be represented by multiple constructs, QueryViz represents each construct
uniquely by considering the logical statement behind the employed construct. This allows
semantically equivalent SQL queries to be represented in the same way. It should be noted
that QueryViz is primarily limited to those SQL queries that express logical statements
with negations and quantifiers and can also be represented by certain logical patterns, i.e.,

1https://www.tableau.com

https://www.tableau.com

CHAPTER 3. RELATED WORK 35

simple conjunctive queries, simple cross-table queries, group-by queries with aggregates,
simple nested not-exists queries, double-nested not-exists queries, and double-nested for-all
queries [77].

Duet uses a predefined dataset as the starting point for data analysis. Law et al. [71],
however, do not described how this dataset can be obtained from source data through joins,
aggregations, and measure calculations. Thus, a result from applying an OLAP pattern
could be used as input for Duet. Unlike Duet, the OLAP pattern approach supports the
combination, aggregation, calculation of measures, and comparison of data residing in a
multidimensional data model by using the available query capabilities of the underlying
host-specific language. Furthermore, our pattern-based approach to multidimensional data
analysis addresses the execution barrier described by Law et al. by providing low-level
executable templates, while the interpretation barrier is addressed by defining the semantics
of the business terms that are to be applied and of the measures that are to be computed.
However, our OLAP patterns could be extended to propose appropriate visualizations that
take into account the level of measurement and the scale of value sets, i.e. nominal,
ordinal, interval, and ratios. The taxonomy of pairwise comparisons identified during the
development of Duo provides further confirmation of the general usefulness of the OLAP
patterns identified during the agriProKnow project. One-to-one respectively many-to-many
comparisons are covered by the subset-to-subset comparison pattern, and one-to-many
comparisons are concerned by the subset-to-complement comparison pattern. These OLAP
patterns focus on single comparisons with respect to the repetition dimension (simple
one-to-one); comparisons where a subset is taken as a reference to compare with others
(simple one-to-many) has not yet been covered by an OLAP pattern. Furthermore, the
absence of an attribute to compare can be accommodated by the pattern-based approach to
multidimensional data analysis by defining different versions of a pattern. The OLAP pattern
approach is not limited to pairwise comparisons. Hence, a wide variety of comparison
types can be supported through OLAP patterns. Unlike Duet and Duo, we do not consider
exploratory data analysis as the main activity, i.e., we expect the BI user to be aware of the
business question to be answered.

Similar to Duet and Duo, Polaris supports the application of filters which are, however,
restricted to simple expressions; complex business terms as in our pattern-based approach
are not directly supported. In addition, computed metrics apply only to that fact class (cube)
for which they were defined, while calculated measures in our approach are independent of
a concrete cube as long as the necessary structure is provided in the application context.
This is possible because our OLAP patterns – differing from the Polaris approach [73] – are
not defined on a logical relational data model but on a conceptual multidimensional data
model.

CHAPTER 3. RELATED WORK 36

The visual approach proposed by Böhnlein et al. that uses the SDWM to specify multidi-
mensional queries lacks the abstraction of OLAP patterns because the visual specification
focuses only on case-specific templates that are restricted to a corresponding cube. The
user is therefore limited to adapting the existing templates by (de)selecting measures and
simple restrictions. In addition to the limited ability to create ad hoc queries, OLAP
queries targeting multiple cubes are not considered. In contrast to Böhnlein et al., our
pattern-based approach offers the necessary expressiveness and flexibility to define complex
business terms and to support heterogeneous OLAP patterns. Although Böhnlein et al.
do not identify patterns in the traditional sense they classify measures into atomic and
complex measures. Atomic measures in SDWM can be compared to simple multidimensional
aggregations, which are captured in our approach by the non-comparative OLAP patterns.
Complex measures in SDWM are limited to measure ratios relying on independent sets,
subsets and base sets, or further dimension level conditions. The pattern-based approach to
multidimensional data analysis avoids these limitations by supporting arbitrary comparisons.

Finally, the logical patterns identified by Danaparamita and Gatterbauer represent non-
comparative query patterns that can be added to the catalog of existing OLAP patterns
(see Appendix B). Furthermore, the OLAP pattern approach can benefit from QueryViz
as it can be used to visualize the SQL templates of an OLAP pattern, thus positively
contributing to the comprehensibility of OLAP patterns.

3.4.2 Model-Driven Analysis Approaches

Model-driven approaches to data analysis are also common. For example, Pardillo et al.
observed that OLAP queries that should be composed are usually not considered during
the design of the system but only once the data warehouse has been implemented [78].
However, to allow designers to verify their conceptual data warehouse design, Pardillo et al.
extend the Object Constraint Language (OCL) of the Unified Modeling Language (UML)
with a predefined set of OLAP operators. This Model-Driven Architecture (MDA) allows to
represent platform-independent OLAP queries that can be automatically translated into
executable SQL code [78]. In addition, the conceptual query representation allows for early
validation of the designed data warehouse and also allows for consideration of the expected
workload through appropriate index and view selection [78]. It is worth noting that for
modeling OLAP queries over a conceptual multidimensional model, Pardillo et al. use
the conceptual representation of the actual multidimensional data, i.e., the logical schema
represented by UML class diagrams serves as the basis. OLAP operations are represented in
OCL by macros that can be parameterized. Pardillo et al. translate the conceptual OLAP
query into SQL by substituting the macros with the corresponding piece of code that is
customized by the specified parameters, while the OCL code is directly translated into SQL.

CHAPTER 3. RELATED WORK 37

To this end, different SQL templates are considered depending on the logical realization,
i.e., star or snowflake schema.

Cabot et al. extend OCL with aggregation functions [79] that can be used to compose
OLAP queries following Pardillo et al. To this end, distributive functions, algebraic functions,
and holistic functions are implemented by OCL operators [79]. This allows OLAP queries
represented in OCL to be easily transformed into executable SQL statements by – in
addition to the steps described by Pardillo et al. – unfolding the aggregation functions
used, i.e., the unfolded aggregation functions contain only OCL operators for which existing
transformation rules can be applied [79].

In contrast to Pardillo et al., our pattern-based approach to multidimensional data analysis
does not directly model OLAP queries conceptually. Rather, our approach specifies an
interface for when and how to compose the corresponding OLAP query. Nevertheless, we
share common features such as automatic code generation. Although we did not consider
the MDA from the outset, our pattern-based approach can be classified as model-driven
engineering, since we allow for automatic code execution from a pattern model. However, our
pattern-based approach differs from the standard MDA perspective [80] where a Platform-
Independent Model (PIM) is transformed into a Platform-Dependent Model, which in turn
is transformed into executable code. The eMDM without expressions represents a PIM,
but an eMDM with business terms that are associated with platform-specific templates
represents a Platform-Specific Model (PSM). Similarly, OLAP patterns without templates
represent PIMs, but when templates are also considered, OLAP patterns represent PSMs.
In addition, our pattern-based approach does not perform model-to-model transformation.
Rather, OLAP patterns are transformed directly into platform-specific code. Furthermore,
Pardillo et al. conceptually represent OLAP queries using OCL on UML class diagrams, as
these represent the actually stored data. Our pattern-based approach instead assumes that
the conceptual multidimensional model also represents the stored data. The transformation
of OLAP queries defined in OCL is similar to the execution of OLAP patterns, as Pardillo
et al. use parameterized macros that are replaced by the corresponding code snippets.
Unlike Cabot et al. aggregation functions do not need to be conceptually represented in
our pattern-based approach; only the corresponding expression is defined as a template.
While this makes the pattern-based approach more flexible, it always requires manual
definition of the expressions. However, by manually defining the template expressions, the
OLAP patterns can take advantage of all the functionalities offered by the underlying query
language.

Chapter 4
Enriched Multidimensional Models

In this chapter, we present and define the notion of enriched multidimensional model
(eMDM) in Section 4.1, which forms the basis for OLAP pattern definition and usage.
To this end, we provide formal definitions for multidimensional models that are enriched
by different types of business terms. In addition, we define how business terms can be
used in patterns. Furthermore, we introduce a definition language for eMDM; we refer to
Appendix A for a definition of the grammar. Finally, we introduce a graphical representation
for the elements of enriched multidimensional models in Section 4.3.

4.1 Enriching Multidimensional Models with Business Terms

An eMDM comprises (i) a multidimensional model (also known as multidimensional schema)
with multiple value sets that is enriched by (ii) a set of business terms. Multidimensional
models are composed of various types of entities and properties. Cubes (or fact schemas)
and dimensions are the primary types of elements in multidimensional models – the entity
types. Apart from these entity types, measures, dimension roles, levels, and attributes exist
– the property types. Furthermore, value set types serve to define domains of measures,
levels, and attributes. An eMDM also comprises different types of business terms that can
be applied to different types of entities, serving different query purposes, i.e., selection,
grouping, ordering, and computation of calculated measures. The type of business term
determines on which type of entity the business term can be applied; types of business
terms are (cube) calculated measure, cube predicate, cube ordering, dimension grouping,
dimension predicate, and dimension ordering.

38

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 39

Definition 1 (Model Element Types). An enriched multidimensional model is based on
the set of model element types O. Set O consists of the model element types Cube

(short: Q), Dimension (D), Measure (M), DimensionRole (R), Level (L), Attribute

(A), NumberV alueSet (U), StringV alueSet (I), UnaryCalculatedMeasure (QMU),
BinaryCalculatedMeasure (QMB), CubeOrdering (QO), UnaryCubePredicate (QPU),
BinaryCubePredicate (QPB), DimensionGrouping (DG), DimensionOrdering (DO),
UnaryDimensionPredicate (DPU), BinaryDimensionPredicate (DPB). The sets of
entity types E = {Q, D}, property types P = {M, R, L, A}, value set type V = {U, I}, and
business term types B = {QMU, QMB, QO, QPU, QPB, DG, DO, DPU, DPB}, are subsets
of set O, i.e., E ⊂ O, P ⊂ O, V ⊂ O, and B ⊂ O.

For the purposes of OLAP pattern definition and usage, a multidimensional model serves as
a conceptual representation of a specific data warehouse schema and consists of entities that
are interrelated and further described by properties. Each entity can be characterized by
multiple properties, each property being owned by exactly one entity. A cube may have cube
properties, i.e., measures and dimension roles, a dimension may have dimension properties,
i.e., levels and (descriptive) attributes. Measures quantify business events of interest that
are represented as data points in a multidimensional cube. For each measure a number
value set specifies the measure’s domain, i.e., the measure maps into a specific set of values.
Specifying the domain for measures avoids flawed comparisons of measure values and
enables comparison across domains if corresponding conversions are specified. For example,
measure values from the number value set Liquid In Liter can be compared to measure
values from the number value set Liquid In Milliliter if converted. Dimension roles link
dimensions to cubes, with the linked dimensions allowing BI users to view measure values
from different perspectives and at different granularity levels. Within a cube, dimension
roles serve as alias names for dimensions, which allows to assign a dimension to the same
cube multiple times using different alias names. A dimension’s alias then corresponds
to a dimension role name and the referenced dimension becomes the dimension role’s
domain. Each dimension is characterized by hierarchically ordered levels of granularity. For
each dimension property, its domain is specified by a value set to avoid incorrect joins
and restrictions. A unary dimension predicate, for example, that restricts a breed level
considering abbreviated breed names cannot be applied to a level with non-abbreviated breed
names even though both levels may have the same name. In order to keep the definitions
concise, we restrict the formalization of multidimensional models to the relevant concepts
for the definition of OLAP patterns. Therefore, we omit definitions of the usual consistency
criteria for dimension hierarchies and refer to related work [81] for a comprehensive study
of dimension hierarchies; the pattern-based approach is agnostic to the supported types of
dimension hierarchies. This is also the reason why we did not reuse the Common Warehouse

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 40

Metamodel [56, p. 235-278].

Definition 2 (Enriched Multidimensional Model). An enriched multidimensional model
s = (O, O, N, type, name, owner, domain, return, rollsUpTo, describe) consists of the
sets of model element types O, model elements O, model element names N , and a set
T for each model element type T ∈ O denoted by T = {o ∈ O | type(o) = T}, where
total function type : O → O defines the type of each model element. These sets of model
elements of a model element type serve to define the sets of entities E = Q ∪ D, cube
properties PQ = M ∪ R, dimension properties PD = L ∪ A, properties P = PQ ∪ PD,
value sets V = U ∪ I, cube business terms BQ = QMU ∪ QMB ∪ QPU ∪ QPB ∪ QO,
dimension business terms BD = DQ ∪ DPU ∪ DPB ∪ DO, unary business terms BU =
QMU ∪QPU ∪QO∪DG∪DPU ∪DO, binary business terms BB = QMB∪QPB∪DPB,
and business terms B = BQ ∪ BD (Figure 4.1). Besides, the type function the enriched
multidimensional model s also comprises the following functions:

• Total function name : O → N assigns to each model element a name.

• Total function owner : P → E defines the owning entity of each property, such that
owner|M∪R : (M ∪ R) → Q, and owner|L∪A : (L ∪ A) → D.

• Total function domain : P → (D ∪ V) defines the domain of each property, such
that domain|R : R → D, domain|M : M → U , domain|L : L → V , and domain|A :
A → I.

• Total function return : (QMU ∪ QMB) → U defines the type of the return value
of a calculated measure by a number value set.

• Total function rollsUpTo : L → 2L defines for a level its parent levels. A level
and its parent level types belong to the same dimension, i.e., ∀l, l′ ∈ L : l ∈
rollsUpTo(l′) ⇒ owner(l) = owner(l′).

• Finally, total function describe : A → L defines the level that an attribute describes.
An attribute and the level that the attribute describes belong to the same dimension,
i.e., ∀a ∈ A : owner(a) = owner(describe(a)).

The different model element types introduced in set O allow to declare the type of business
term parameters and pattern variables (pattern parameters and derived elements). This
makes it possible to restrict the names of the eMDM elements to be bound to those of a
specific model element type and also to define the scope in which business term parameters
and pattern variables can be used within the template of a business term or pattern. In
addition, the set of model element types O can be easily extended if the expressiveness of

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 41

… Model
 Elements

E

P

B

 … Cube

 … Dimension

 … DimensionGroupings

 … UnaryDimensionPredicates

 … BinaryDimensionPredicates

 … DimensionOrderings

PQ

PD

V
 … NumberValueSets

 … StringValueSets

… Entities

… Properties

… Value Sets

Q

D

U

I

... Cube
 Properties

... Dimension
 Properties

 … Measures

 … DimensionRoles

M

R

 … Levels

 … Attributes

L

A

QMU

QMB

QPU

QPB

QO

 … UnaryCalculatedMeasures

 … BinaryCalculatedMeasures

 … UnaryCubePredicates

 … BinaryCubePredicates

 … CubeOrderings

BQ

BD

... Cube Business
 Terms

Dimension
Business Terms

DG

DPU

DPB

DO

O

...

Business
Terms

...

Figure 4.1: Sets of model elements introduced in Definition 2 (except sets of unary and
binary business terms)

the eMDM is to be improved by introducing new types of multidimensional model elements
and business terms.

Example 4.1 (Multidimensional model). Listing 4.1 defines a cube named Milking which
comprises two measures (Lines 2-5), one of which is named Milk Yield, which has a number
value set named Liquid In Liter as domain (Line 3), i.e., ∃q ∈ Q : ∃m ∈ M ∃u ∈
U : name(q) = “Milking” ∧ name(m) = “Milk Y ield” ∧ owner(m) = q ∧ name(u) =
“Liquid In Liter” ∧ domain(m) = u (see Figure 2.4). The Milking cube further owns
five dimension roles, with the corresponding dimensions as their domains (Lines 7-13), one
of which is a dimension role named Cattle with a dimension named Animal as its domain
(Line 8), i.e., ∃q ∈ Q : ∃r ∈ R ∃d ∈ D : name(q) = “Milking” ∧ name(r) = “Cattle” ∧
owner(r) = q ∧ name(d) = “Animal” ∧ domain(r) = d. Listing 4.2 defines a dimension
named Animal which owns four levels (Lines 2-7), one of which is named Animal (Line 3),
i.e., ∃d ∈ D : ∃l ∈ L : name(d) = “Animal” ∧ name(l) = “Animal” ∧ owner(l) = d

(see Figure 2.4). The Animal level is further described by an attribute named Animal Name

(Line 10 and Line 17), i.e., ∃d ∈ D : ∃l ∈ L ∃a ∈ A : name(d) = “Animal” ∧ name(l) =
“Animal”∧owner(l) = d∧name(a) = “Animal Name”∧owner(a) = d∧describe(a) = l.
The levels of the Animal dimension are arranged in a aggregation hierarchy (Lines 14-16),

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 42

e.g., the Animal level rolls-up to the Main Breed level, i.e., ∃d ∈ D : ∃l, l′ ∈ L : owner(l) =
d∧owner(l′) = d∧name(l) = “Animal”∧name(l′) = “Main Breed”∧rollsUpTo(l) = l′.
Each level and attribute has a domain (Lines 3-6 and Line 10), one of which is a level
named Main Breed that has a value set named Breed Name as its domain, i.e., ∃l ∈ L : ∃v ∈
V : name(l) = “Main Breed” ∧ name(v) = “Breed Name” ∧ domain(l) = v. ♢

1 CREATE CUBE "Milking" WITH

2 MEASURE PROPERTIES

3 "Milk Yield":"Liquid In Liter";

4 "Fat Content":"Percent Per Liter";

5 END MEASURE PROPERTIES;

6

7 DIMENSION_ROLE PROPERTIES

8 "Cattle":"Animal";

9 "Milking Time":"Time";

10 "Lactation":"Lactation";

11 "Calving":"Calving";

12 "Farm":"Farm";

13 END DIMENSION_ROLE PROPERTIES;

14 END CUBE;

Listing 4.1: Definition of Happy Milk’s Milking cube

1 CREATE DIMENSION "Animal" WITH

2 LEVEL PROPERTIES

3 "Animal":"Animal Code";

4 "Date Of Birth":"Date";

5 "Main Breed":"Breed Name";

6 "Dam":"Animal Code";

7 END LEVEL PROPERTIES;

8

9 ATTRIBUTE PROPERTIES

10 "Animal Name":"Name";

11 END ATTRIBUTE PROPERTIES;

12

13 CONSTRAINTS

14 "Animal" ROLLS_UP_TO "Date Of Birth";

15 "Animal" ROLLS_UP_TO "Main Breed";

16 "Animal" ROLLS_UP_TO "Dam";

17 "Animal" DESCRIBED_BY "Animal Name";

18 END CONSTRAINTS;

19 END DIMENSION;

Listing 4.2: Definition of Happy Milk’s Animal dimension

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 43

Applying the unique name assumption to entities, values sets, business terms, and properties
in the agriProKnow project [4] turned out to be too rigid, as it limited the ability to express
sophisticated multidimensional models. In this thesis we relax the unique name assumption.
For simplicity’s sake, without loss of generality, we assume that names of entities, value
sets, and business terms are unique within an eMDM whereas property names are unique
only per owning entity.

Definition 3 (Proper Naming in Enriched Multidimensional Models). The elements of an
enriched multidimensional model s are properly named, if, and only if,

• entities, value sets, and business terms have a unique name, i.e., name|E∪V ∪B is
injective, and

• property names are unique in the context of the owning entity, i.e., ∀p, p′ ∈ P :
name(p) = name(p′) ∧ owner(p) = owner(p′) ⇒ p = p′.

The names of entities, properties, and value sets along with the corresponding types available
in an eMDM constitute the vocabulary used to define business terms. For the purposes of
formalization, in order to refer to the names of all the model elements of a specific type
in an eMDM, corresponding sets of element names are defined, e.g., the set ND which
consists of the names of the dimensions in an eMDM.

Definition 4 (Element Names of an Enriched Multidimensional Model). For each set T for
a particular model element type in an enriched multidimensional model s a set of model
element names NT is denoted by NT = {n ∈ N | ∃o ∈ T : name(o) = n}.

The business terms defined in an eMDM conceptually represent – in addition to the
multidimensional model elements – business vocabulary used in data analysis. A business
term consists of a set of constraints and a set of expression templates. In addition, for
business terms that represent calculated measures, a return type is specified. A business
term is either unary or binary, i.e., it is applied to either one or two entities. The entities
to be applied to are passed during business term application as context parameters. A
unary business term has one context parameter (arity one), a binary business term has two
(arity two). A context parameter is a cube for cube business terms and a dimension for
dimension business terms. Although business terms with an arity above two could easily be
included, we consider only unary and binary business terms sufficient for most applications.
Constraints over the context parameters impose restrictions on the model elements that
may be bound to the parameters during application. The expression template is specific
to a query language and dialect, representing executable semantics of the business term

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 44

as a code snippet, with references to the parameters. A business term may have different
expression templates for different systems.

Definition 5 (Business Term). A business term b = (BP, CT, CP, CD, TPL) in an
enriched multidimensional model s comprises a set of implicit context parameters BP

derived from the type of b in s, the constraint relations CT , CP , and CD (see Definition 6)
as well as the set TPL of templates. Depending on the arity of b’s type in s, the set of
context parameters can be derived as follows:

• if b is defined over a single entity (unary business term) the set of context parameters
BP consists of an implicit context parameter ⟨ctx⟩, i.e., ∀b ∈ BU : BP = {⟨ctx⟩},
or

• if b is defined over a pair of entities (binary business term) the set of context
parameters BP consists of two implicit context parameters ⟨ctx⟩[1] and ⟨ctx⟩[2], i.e.,
∀b ∈ BB : BP = {⟨ctx⟩[1], ⟨ctx⟩[2]},

• with a derived total function bptype : BP → E that assigns an entity type as domain
to each context parameter, the type of which is derived from the business term’s
type, such that for a cube business term the entity type is Q, i.e., ∀b ∈ BQ : ∀v ∈
BP : bptype(v) = Q, and for a dimension business term the entity type is D, i.e.,
∀b ∈ BD : ∀v ∈ BP : bptype(v) = D.

Example 4.2 (Business Term). Listing 4.3 defines a business term named Average Milk

Yield on top of Happy Milk’s multidimensional model as a unary calculated measure,
i.e., ∃b ∈ QMU : name(b) = “Average Milk Y ield”. Average Milk Yield is applied
to a cube referred to by the context parameter ⟨ctx⟩ (Line 1), i.e., BP = {⟨ctx⟩} and
bptype(⟨ctx⟩) = Q. The application of the business term to the argument cube leads to
the computation of a calculated measure from a number value set named Liquid In Liter

(Line 7). The cube, in turn, can be specified by binding a name to the context parameter
⟨ctx⟩. Listing 4.4 defines, in addition to a description (Lines 1-5), a SQL template expression
t ∈ TPL for an Oracle database providing an executable definition of the term’s semantics
(Lines 7-11). ♢

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 45

1 CREATE UNARY_CALCULATED_MEASURE "Average Milk Yield"

APPLIES TO <ctx >:CUBE WITH

2 CONSTRAINTS

3 <ctx > HAS MEASURE "Milk Yield";

4 <ctx >."Milk Yield":"Liquid In Liter";

5 END CONSTRAINTS;

6

7 RETURNS "Liquid In Liter";

8 END UNARY_CALCULATED_MEASURE;

Listing 4.3: Definition of Average Milk Yield business term

1 CREATE TERM DESCRIPTION FOR "Average Milk Yield" WITH

2 LANGUAGE = "English";

3 ALIAS = "Mean Milk Yield";

4 DESCRIPTION = "Calculation of the average milk

yield of milking events";

5 END TERM DESCRIPTION;

6

7 CREATE TERM TEMPLATE FOR "Average Milk Yield" WITH

8 LANGUAGE = "SQL";

9 DIALECT = "ORACLEv11";

10 EXPRESSION = "AVG(<ctx >.""Milk Yield"")";

11 END TERM TEMPLATE;

Listing 4.4: Description and template definition of Average Milk

Yield buiness term

Business term constraints define conditions to be satisfied by elements (of the associated
multidimensional model) referred to by their name in the definition or during the application
of the business term. The associated multidimensional model is represented by the cube,
dimension and value set elements available in the eMDM of the business term. Again, by
borrowing the design-by-contract metaphor from software engineering, the specification of
the constraints can be seen as a contract that defines the conditions to be met in order to
obtain an executable expression. In turn, it is ensured that the template expressions of a
business term are formulated to produce an executable expression when entities are bound
to the context parameters that satisfy the conditions. We distinguish type, property, and
domain constraints for business terms. A type constraint specifies the expected type of an
entity – denoted by a constant name, i.e., an entity with the specified name and type must
exist in the associated multidimensional model. Type constraints ensure that references to
entities are used in an expression template only in places where it makes sense semantically.
A property constraint specifies for an entity – referenced by the name bound to a context

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 46

parameter or by a constant name – which property of what type is expected to be present in
a multidimensional model in the context of which the business term is applied; the property
to be provided is referred to by a name constant. A domain constraint specifies that an
entity – referenced by a name bound to a parameter or by a constant name – must have a
property of a certain domain. Depending on the type of property, the domain refers either
to a value set or a dimension; both the property to be provided and the domain are referred
to by name constants.

Definition 6 (Business Term Constraints). A business term b’s constraints are represented
by relations:

• CT ⊆ NE × E that represents a business term’s type constraints,

• CP ⊆ (BP ∪ NE) ×P× NP that represents the business term’s property constraints,
and

• CD ⊆ (BP ∪ NE) × NP × (NV ∪ ND) that represents the business term’s domain
constraints.

Example 4.3 (Business Term Constraints). In Listing 4.3, the Average Milk Yield unary
calculated measure defines two constraints. A property constraint requires a measure
property named Milk Yield to be part of the entity referred to by the context parameter
⟨ctx⟩ (Line 3), i.e., (⟨ctx⟩, M, “Milk Y ield”) ∈ CP . A domain constraint requires the entity
referred to by the context parameter ⟨ctx⟩ to provide a property named Milk Yield with a
domain named Liquid In Liter (Line 4), i.e., (⟨ctx⟩, “Milk Y ield”, “Liquid In Liter”) ∈
CD. ♢

OLAP patterns are formulated using the names of model elements along with the available
types in an eMDM. Similar to relational databases, where users interact through queries
that reference tables and columns by name rather than by object identifier, patterns are
defined by specifying names of eMDM elements. For the purposes of formalization, we
define a set of views over the eMDM to represent the available model elements and their
relationships using names; these views represent the vocabulary for pattern definition. We
distinguish type, property, and domain views as well as views regarding the return type
of business terms and the business terms itself. The type view represents entities, value
sets, and business terms by its name and type. The property view represents each property
by the name of its owning entity, its type, and its name, while a domain view represents
the domain of each property by the name of the property’s owning entity, the name of
the property, and the name of its domain. In addition, the return view also represents the
number value set returned by calculated measures by the name of the business term and

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 47

the name of the number value set. Finally, the term view represents the business term
definitions along with their names.

Definition 7 (Multidimensional Model Views). For an enriched multidimensional model s

with proper naming, view relations are defined and populated as follows:

• hasType ⊆ (NE ∪ NV ∪ NB) × (O \ P),
with ∀o ∈ (E ∪ V ∪ B) : (name(o), type(o)) ∈ hasType,

• hasProperty ⊆ NE × P × NP ,
with ∀p ∈ P : (name(owner(p)), type(p), name(p)) ∈ hasProperty,

• hasDomain ⊆ NE × NP × (NV ∪ ND),
with ∀p ∈ P : (name(owner(p)), name(p), name(domain(p))) ∈ hasDomain,

• hasReturn ⊆ (NQMU ∪ NQMB) × NU ,
with ∀b ∈ (QMU ∪ QMB) : (name(b), return(b)) ∈ hasReturn

• hasTerm ⊆ NB × B,
with ∀b ∈ B : (name(b), b) ∈ hasTerm

Example 4.4. Considering Happy Milk’s eMDM as defined by Example 4.1 and Ex-
ample 4.2, the following view entries can be derived: {(“Milking”, Q), (“Animal”, D),
(“Liquid In Liter”, U)} ⊆ hasType, {(“Milking”, M, “Milk Y ield”), (“Animal”,
L, “Animal”)} ⊆ hasProperty, {(“Milking”, “Milk Y ield”, “Liquid In Liter”),
(“Animal”, “Animal”, “Animal Name”)} ⊆ hasDomain, {(“Average Milk Y ield”,

“Liquid In Liter”)} ⊆ hasReturn, ∃b ∈ QMU : (“Average Milk Y ield”, b) ∈ hasTerm.
♢

4.2 Usage of Business Terms

The use of a business term in the context of OLAP patterns requires the user to apply
the business term by binding names to the term’s context parameters. The application
returns a new business term, the context parameters of which are substituted with names
of entities in the constraints. In addition, for each context parameter, the returned business
term contains a derived type constraint consisting of the name bound to the parameter
and its declared type. It should be noted that the substitution does not affect the business
term’s template.

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 48

Definition 8 (Business Term Application). An application δb
σ of a business term b = (BP,

CT, CP, CD, TPL) given a total substitution function σ : BP → NE , with BP the set of
b’s context parameters, returns a new business term b′, with b′ = (BP, CT ′, CP ′, CD′, TPL)
where CT ′ = {(σ(v), bptype(v))|v ∈ BP} ∪ CT , and CP ′, CD′ correspond to CP , CD,
respectively, with variables substituted according to σ.

Example 4.5 (Business Term Application). The application of the Average Milk Yield

business term (Example 4.2) with the name Milking bound to the context parameter ⟨ctx⟩,
i.e., δb

σ with σ(⟨ctx⟩) = “Milking”, yields a new business term, with all occurrences of
the context parameter ⟨ctx⟩ being substituted by Milking in the constraints of the new
business term and a new type constraint for the bound context parameter ⟨ctx⟩, i.e.,
(“Milking”, Q) ∈ CT . ♢

Since only names of expected entities are provided during business term application, the
resulting business term may not be valid when considering the associated multidimensional
model, i.e., no entities corresponding to the bound names may be available that satisfy the
specified constraints. Thus, a business term application is valid considering the associated
multidimensional model if, and only if, elements can be found in the multidimensional
model that conform to the expected names and constraints, i.e., (i) a type constraint in the
context of the associated multidimensional model is satisfied if, and only if, an entity with
the expected type and name can be identified in the associated multidimensional model, (ii)
a property constraint in the context of the associated multidimensional model is satisfied if,
and only if, an entity with the corresponding property of the specified property type exists
in the associated multidimensional model, and (iii) a domain constraint in the context the
associated multidimensional model is satisfied if, and only if, an entity exists that has a
property with the specified domain.

Definition 9 (Valid Business Term Application). An application δb
σ of a business term

b = (BP, CT, CP, CD, TPL) given a total substitution function σ is a valid business
term application to an enriched multidimensional model s with multidimensional model
views hasType, hasProperty, and hasDomain if, and only if, it returns a business term
b′ whose constraints are satisfied, i.e., CT ⊆ hasType, CP ⊆ hasProperty, and CD ⊆
hasDomain.

Example 4.6 (Valid Business Term Application). The business term application in Ex-
ample 4.5 is valid, since the constraints of the returned business term can be satisfied in
the context of Happy Milk’s multidimensional model as follows. A cube named Milking is
present (Listing 4.1), satisfying the derived type constraint, i.e., (“Milking”, Q) ∈ hasType.
The Milking cube has a measure named Milk Yield (Listing 4.1, Line 3), satisfying the prop-
erty constraint, i.e., (“Milking”, M, “Milk Y ield”) ∈ hasProperty. The Milking cube

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 49

also has a property named Milk Yield with domain Liquid In Liter (Listing 4.1, Line 3),
satisfying the domain constraint, i.e., (“Milking”, “Milk Y ield”, “Liquid In Liter”) ∈
hasDomain. ♢

The representation of a domain-specific vocabulary through business terms frees BI users
from the burden of having to define the term’s expression manually, especially since domain
vocabularies can contain several thousand terms (see AGROVOC [21] in dairy farming or
SNOMED CT [22] in the health insurance domain). In addition, business terms free BI
users from having to check whether a business term is even suitable for use within an OLAP
query.

4.3 Enriched Multidimensional Model Notation

We employ a graphical notation for the illustration of eMDM definitions. Even if a graphical
and a textual representation convey the same information, a graphical representation can
be perceived more quickly, more easily, and more accurately, so that the information can be
processed more efficiently [82]; visual notations impact cognitive effectiveness as much as
formal descriptions of semantics [83]. The design principles for graphical notations proposed
by Moody [83] serve as guidelines to achieve a cognitively effective graphical eMDM
notation. The proposed eMDM notation aims for semiotic clarity, as each model element is
represented by exactly one notation element. Types of notational elements are distinguished
by using the visual variables color and shape for encoding. Instances of notational elements,
on the other hand, are distinguished by text, i.e., eMDM element names, which promotes
perceptual discriminability and visual expressiveness. All textual representations, as part of
the graphical notation, refer to grammar rules that are defined by corresponding syntax
definitions in Appendix A, Listing A.2 and Listing A.3. Semantic transparency, i.e., the

⟨cube name⟩⟨cube name⟩
Cube

 ⟨meas name⟩ ':'
 ⟨val set name⟩
 ⟨meas name⟩ ':'
 ⟨val set name⟩

⟨dim name⟩ Dimension

Level

Roll-Up
Relationship

Attribute

⟨lvl name⟩ ':' ⟨val set name⟩⟨lvl name⟩ ':' ⟨val set name⟩

⟨attr name⟩ ':' ⟨val set name⟩⟨attr name⟩ ':' ⟨val set name⟩⟨attr name⟩ ':' ⟨val set name⟩

⟨dim role name⟩⟨dim role name⟩

Measure

Dimension Role

Figure 4.2: Multidimensional model notation

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 50

ability to infer the meaning based on the appearance of representations, of the eMDM
notation comes from adopting the common dimensional fact model (DFM) notation as
a basis for the multidimensional model notation [25]. Although the notation of defined
business terms has to be learned by both novices and experts, experts familiar with concepts
of the multidimensional model are likely to derive the multidimensional model notation’s
meaning from the representation without further explanations. Means for complexity
management that take into account perceptual and cognitive limits are not considered here.
Concerns of pattern and eMDM organization, however, are addressed in Chapter 7. We
continue to follow the principle of graphic economy by focusing only on those aspects of
eMDM elements that are relevant to the OLAP pattern approach. Finally, the proposed
eMDM notation promotes cognitive integration by adding icons to business terms that
correspond to the type of the expected target multidimensional model element.

The graphical notation for multidimensional model elements is as follows (see Figure 4.2).
Boxes with solid lines represent cubes, the top compartment of which contains the cube’s
name, the second lists the measures. Dashed-and-dotted lines represent dimension roles,
gray areas indicate membership of levels and attributes to dimensions, white circles represent
levels, annotation lines of levels represent attributes, and edges between those levels represent
roll-up relationships. Measures in cubes are additionally annotated with a ruler icon; the
redundant visual notation promotes cognitive integration. The domains of measures, levels,
and attributes follow a colon after the property name. A pointer from the cube to the base
level of a dimension specifies the domain of a dimension role. Figure 4.4 then shows an
example multidimensional model, corresponding to Example 4.1, that is enriched with the

Entity Markers (EMs)

Function Markers (FMs)

DimensionCube

Grouping

Ordering

Calculated Measure

Predicate

⟨txt label⟩

⟨param decl⟩, ...

⟨txt temp⟩

⟨cstr decl⟩, ...

⟨EM⟩ ⟨FM⟩

⟨txt return⟩*

* only for calculated measures

Arity Markers (AMs)

BinaryUnary

⟨AM⟩

1 2

Figure 4.3: Business term notation

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 51

definition of business terms.

In the eMDM visualization, business terms are represented by dashed rectangles with round
edges, divided into four or five compartments, depending on the type of business term (see
Figure 4.3). The first compartment contains the name along with entity, arity, and function
markers. Entity markers denote the entity type for which a business term is defined, i.e.,
either a cube or a dimension icon. Arity markers denote the number of context parameters
to be provided. Function markers denote the query functionality provided, i.e., a funnel icon
denotes predicates, an icon consisting of four framed black dots denotes groupings, an icon
consisting of four vertical bars of increasing length denotes orderings, and a dotted measure
icon preceded by a slash denotes calculated measures. The second compartment contains
context parameters, visually marked by a downward-pointing arrow. The third compartment
contains all constraints, visually marked by a chain icon. The fourth compartment is
optional and contains the return type of calculated measures, visually marked by an upward-
pointing arrow. The fifth compartment contains one or more expression templates, possibly
annotated with target language and system (which are omitted in the examples). Both
context parameters and constraints are represented only textually; a visual representation
would lead to cluttered representation of business terms.

CHAPTER 4. ENRICHED MULTIDIMENSIONAL MODELS 52

D
a
te

:
D

a
te

M
o
n
th

:
M

o
n
th

 N
o

Y
e
a
r:

Y
e
a
r
N

o

M
ilk

in
g
 T

im
e

M

ilk
in

g
 T

im
e

T
im

e
M

o
n
th

 L
ab

el
:

M
o
n
th

 N
am

e

<
ct

x>
<

ct
x>

<
ct

x>
<

ct
x>

<
ct

x>
[1

]
<

ct
x>

[1
]

<
ct

x>
[2

]
<

ct
x>

[2
]

<
ct

x>
<

ct
x>

U
n
d
e
r

H
e
a
t

S
tr

e
ss

<
ct

x>
[1

]:
D

im
en

si
on

,
<

ct
x>

[2
]:
D

im
en

si
o
n

(
<
c
t
x
>
[
1
]
.
"
A
n
i
m
a
l
"
,
<
c
t
x
>
[
2
]
.
"
D
a
t
e
"
)

I
N

(
S
E
L
E
C
T

*

F
R
O
M

"
U
n
d
e
r
H
e
a
t
S
t
r
e
s
s
"
)

<
ct

x>
[1

].
"
A

n
im

al
":

"
A

n
im

al
 C

od
e"

,
<

ct
x>

[2
].
"
D

at
e"

:"
D

at
e"

,
"
U

n
d
er

H
ea

tS
tr

es
s"

:C
u
b
e

M
id

 L
a
ct

a
ti
o
n
 P

h
a
se

<
ct

x>
."

L
ac

ta
ti
o
n
"
:"

N
o
 O

f
D

ay
s"

<
c
t
x
>
.
"
L
a
c
t
a
t
i
o
n
"

B
E
T
W
E
E
N

1
0
0

A
N
D

2
0
0

<
ct

x>
:C

u
b
e

<
ct

x>
."

F
ar

m
 I
d
"
:"

F
ar

m
 C

od
e"

<
c
t
x
>
.
"
F
a
r
m

I
d
"

<
ct

x>
:D

im
en

si
on

P
e
r

F
a
rm

<
ct

x>
<

ct
x>

<
ct

x>
[1

]
<

ct
x>

[1
]

<
ct

x>
[2

]
<

ct
x>

[2
]

A
v
e
ra

g
e
 M

il
k
 Y

ie
ld

 R
a
ti
o

<
ct

x>
[1

]:
C
u
b
e,

 <
ct

x>
[2

]:
C
u
b
e

A
V
G
(
<
c
t
x
>
[
1
]
.
"
M
i
l
k

Y
i
e
l
d
"
)
/

A
V
G
(
<
c
t
x
>
[
2
]
.
"
M
i
l
k

Y
i
e
l
d
"
)

<
ct

x>
[1

]
h
a
s

M
e
a
su

re
 "

M
ilk

 Y
ie

ld
",

<
ct

x>
[1

].
"
M

ilk
 Y

ie
ld

":
"
L
iq

u
id

 I
n
 L

it
er

",

<
ct

x>
[2

]
h
a
s

M
e
a
su

re
 "

M
ilk

 Y
ie

ld
",

<
ct

x>
[2

].
"
M

ilk
 Y

ie
ld

":
"
L
iq

u
id

 I
n
 L

it
er

"

<
ct

x>
."

M
ai

n
 B

re
ed

"
:"

B
re

ed
 N

am
e"

<
c
t
x
>
.
"
M
a
i
n

B
r
e
e
d
"
=
"
H
o
l
s
t
e
i
n
"

<
ct

x>
:D

im
en

si
on

H
o
ls
te

in

<
ct

x>
."

T
ow

n
"
:"

T
o
w

n
 N

am
e"

<
c
t
x
>
.
"
T
o
w
n
"

A
S
C

<
ct

x>
:D

im
en

si
on

T
o
w

n
 A

S
C

<
ct

x>
."

D
at

e
O

f
B

ir
th

":
"
D

at
e"

t
r
u
n
c
(
(
S
Y
S
D
A
T
E
–
<
c
t
x
>
.

"
D
a
t
e

O
f

B
i
r
t
h
"
)
/
3
6
5
.
2
5
)
<
3

<
ct

x>
:D

im
en

si
on

Y
o
u
n
g
 C

a
tt

le

<
ct

x>
<

ct
x>

L
a
ct

a
ti
o
n

M

ilk
 Y

ie
ld

:
L
iq

u
id

 I
n
 L

it
er

F
at

 C
on

te
n
t:
 P

er
ce

n
t

P
er

 L
it
er

M
il
k
in
g

M

ilk
 Y

ie
ld

:
L
iq

u
id

 I
n
 L

it
er

F
at

 C
on

te
n
t:
 P

er
ce

n
t

P
er

 L
it
er

M
il
k
in
g

F
a
rm

 I
d
:

F
a
rm

 C
o
d
e

T
o
w
n
 I
d
:

Z
ip

 C
o
d
e

P
ro

v
in

ce
:

P
ro

v
in

ce
 N

a
m

e

F
a
rm

F
ar

m
F
ar

m
C
at

tl
e

C
at

tl
e

M
a
in

 B
re

e
d
:

B
re

e
d
 N

a
m

e

A
n
im

a
l

D
a
m

:
A
n
im

a
l
C
o
d
e

E
n
te

rp
ri
se

 I
d
:
S
sn

C
a
lv

in
g

L
ac

ta
ti
o
n

L
ac

ta
ti
o
n

D
a
y

O
f
L
a
ct

a
ti
o
n
:

N
o
 O

f
D

a
ys

C
al

vi
n
g

C
al

vi
n
g

C
a
lv

in
g
 N

o
:

N
o
 O

f
B
ir
th

s

A
n
im

a
l:

A
n
im

a
l
C
o
d
e

T
o
w

n
:
T

ow
n
 N

am
e

S
ta

te
:

S
ta

te
 N

a
m

e

D
a
te

 O
f
B
ir
th

:
D

a
te

A
n
im

al
 N

am
e:

N
am

e

<
ct

x>
<

ct
x>

<
ct

x>
 h

a
s

M
e
a
su

re
 "

M
ilk

 Y
ie

ld
",

<
ct

x>
."

M
ilk

 Y
ie

ld
"
:"

L
iq

u
id

 I
n
 L

it
er

"

A
V
G
(
<
c
t
x
>
.
"
M
i
l
k

Y
i
e
l
d
"
)

<
ct

x>
:C

u
b
e

A
v
e
ra

g
e
 M

il
k
 Y

ie
ld

"
L
iq

u
id

 I
n
 L

it
er

"

"R
at

io
n
al

 N
u
m

b
er

"

H
ig

h
 A

v
g
 M

il
k
 Y

ie
ld

 R
a
ti
o

<
ct

x>
:C

u
b
e

<
ct

x>
."

A
ve

ra
g
e

M
ilk

 Y
ie

ld
 R

at
io

"
:

"
L
iq

u
id

 I
n
 L

it
er

"

A
B
S
(
1
-
<
c
t
x
>
.
"
A
v
e
r
a
g
e

M
i
l
k

Y
i
e
l
d

R
a
t
i
o
"
)
>
0
.
2

11 11 11 11
22

22
11

11

11

Fi
gu

re
4.

4:
Ha

pp
y

M
ilk

’s
en

ric
he

d
m

ul
tid

im
en

sio
na

lm
od

el
(p

ot
en

tia
lv

ali
d

bu
sin

es
st

er
m

ap
pl

ica
tio

ns
ar

e
in

di
ca

te
d

by
da

sh
ed

gr
ey

ar
ro

ws
,

re
pr

es
en

tin
g

th
e

bi
nd

in
g

of
th

e
co

rre
sp

on
di

ng
co

nt
ex

tp
ar

am
et

er
by

th
e

en
tit

y
na

m
e

po
in

te
d

to
)

Chapter 5
Pattern Definition

In this chapter, we formalize the notion of pattern and introduce a pattern definition
language; we refer to Appendix A for a definition of the grammar. In Section 5.1 we
focus on the structural aspects of patterns, i.e., pattern parameters, derived elements, and
local cubes, the definition of which is a prerequisite to pattern usage with automatic query
generation (see Figure 2.2 in Section 2.1), which we further describe in Chapter 6. We
conclude this chapter by introducing a graphical notation in Section 5.2.

5.1 Formal Pattern Foundations

The vocabulary to define a pattern is provided by an associated eMDM, i.e., the names of
model elements and the corresponding types, which are arranged in a meaningful way in
order to satisfy a generic information need. Pattern definition involves declaration of pattern
parameters and derived elements, derivation rules for each derived element, constraints,
local cubes representing intermediary results, and templates. A pattern also comprises alias
names, a description of the problem to be solved, an informal explanation of the solution,
and an exemplary description of usage, aimed towards human comprehensibility and not
referred to in the formalization.

Definition 10 (Pattern). A pattern p = (O, PP , DE, pvtype, derivation, CT , CP ,
CD, CR, CA1, CA2, TPL, Nloc, hasTypeloc, hasPropertyloc, hasDomainloc), associ-
ated with an enriched multidimensional model s, consists of

• the set of model element types O and the disjoint sets of pattern parameters PP

and derived elements DE, which together constitute p’s set of pattern variables
PV = PP ∪ DE,

53

CHAPTER 5. PATTERN DEFINITION 54

• a total function pvtype : PV → O that declares types of pattern variables, with
type|DE : DE → {D, U, I},

• a set of templates TPL,

• derivation rules derivation (see Definition 11), constraint relations CT , CP , CD,
CR, CA1, and CA2 (see Definition 13), local cubes Nloc, hasTypeloc, hasPropertyloc,
hasDomainloc (see Definition 12), and

• derived subsets of

– pattern variables that represent entities PVE = {v ∈ PV | pvtype(v) ∈ E},
value sets PVV = {v ∈ PV | pvtype(v) ∈ V}, calculated measures PVQM =
{v ∈ PV | pvtype(v) ∈ {QMU, QMB}}, dimensions PVD = {v ∈ PV |
pvtype(v) = D}, as well as

– pattern parameters that represent business terms PPB = {v ∈ PV | pvtype(v) ∈
B} and properties PPP = {v ∈ PV | pvtype(v) ∈ P}.

A pattern consists of multiple variables. Apart from the pattern parameters, the values
of which the user specifies upon instantiation, a pattern’s set of variables typically also
comprises a number of derived elements. A derived element is a variable, the value of
which ultimately derives from pattern parameters and other derived elements according to
a derivation rule, which reduces the number of elements that must be specified by the user
upon instantiation. Derived elements serve to structure the pattern and facilitate pattern
usage, for without derived elements users would have to specify the missing information
using parameters. For example, a unary dimension predicate can be applied to a derived
element representing a dimension. The dimension to be restricted can be determined by
evaluating the corresponding derivation rule. Thus, a user only states a cube’s dimension
role instead of specifying both the dimension role and the dimension. It should be noted
that the dimension role as well as its referenced dimension are required for a restriction
since one dimension can be referenced by multiple roles in one cube. Just as parameters,
derived elements can occur at various positions in the language-specific templates.

Example 5.1 (Pattern Variables). The breed-specific subset-subset comparison introduced
in Chapter 2 has ten pattern parameters (Figure 2.5–Context, Lines 1-12). One of the
pattern parameters is ⟨sourceCube⟩, which refers to a cube (Line 2). The pattern parameter
⟨compDimRole⟩ refers to a dimension role and the pattern parameter ⟨iDimSlice⟩ refers
to a unary dimension predicate, i.e., ∃ ⟨sourceCube⟩, ⟨compDimRole⟩, ⟨iDimSlice⟩ ∈ PP :
pvtype(⟨sourceCube⟩) = Q ∧ pvtype(⟨compDimRole⟩) = R ∧ pvtype(⟨iDimSlice⟩) = DPU.
The pattern further has four derived elements, ⟨baseDim⟩, ⟨compDim⟩, ⟨joinDim⟩, and

CHAPTER 5. PATTERN DEFINITION 55

⟨cubeMeasureDom⟩ (Lines 14-19), i.e., ∃ ⟨baseDim⟩, ⟨compDim⟩, ⟨joinDim⟩, ⟨cubeMeasureDom⟩
∈ DE : pvtype(⟨baseDim⟩) = D ∧ pvtype(⟨compDim⟩) = D ∧ pvtype(⟨joinDim⟩) = D ∧
pvtype(⟨cubeMeasureDom⟩) = U. ♢

A pattern definition comprises templates for various target languages for the purposes
of illustration but also for automatic query generation. The templates of a pattern are
a realization of the solution, which is described informally in text. A pattern template
is formulated for a target language and refers to each pattern parameters and to some
derived elements at specific positions in code in the target language, either directly or
as input for macro calls. A template represents the core OLAP query structure as an
incomplete implementation formulated in a target language, taking into account a specific
data model and implementation variant. The template is a combination of static content,
represented by code in a target language, and dynamic content, i.e., pattern variables,
derived elements, and macro calls, which are assigned specific values of an associated
eMDM upon instantiation. Since the dynamic contents of the pattern are embedded in the
template, the entire functionality of the target language is available to the pattern author,
which allows for the composition of expressive queries.

For each derived element, a pattern must have a corresponding derivation rule. During
pattern grounding in a specific eMDM (see Chapter 6), derivation rules serve to determine
the names of value sets and dimensions that replace the derived elements in the pattern. A
derived element is either derived via a property from an entity or via the return type of a
calculated measure. Derivation rules involving an entity’s property return the name of that
property’s domain, i.e., a number value set, a string value set, or a dimension name, while
derivation rules involving calculated measures’ return types return the names of number
value sets.

Definition 11 (Pattern Derivation Rule). A pattern p’s total function derivation : DE →
(((PVE ∪ NE) × (PPP ∪ NP)) ∪ (PPB ∪ NB)) defines derivation rules that either involve
the domain of an entity’s property or the return type of business terms.

Example 5.2 (Pattern Derivation Rule). The name of the derived element ⟨compDim⟩
defined in the breed-specific subset-subset comparison pattern (see Figure 2.5—Context,
Line 16), for example, can be obtained from an entity referenced by the pattern para-
meter ⟨sourceCube⟩ via the property referenced by the pattern parameter ⟨compDimRole⟩,
i.e.,∃⟨compDim⟩∈ DE : ∃⟨sourceCube⟩,⟨compDimRole⟩∈ PP : derivation(⟨compDim⟩) =
(⟨sourceCube⟩,⟨compDimRole⟩). The name of the ⟨compDimRole⟩ property’s referenced do-
main can then be bound to ⟨compDim⟩. In addition, the derived element ⟨cubeMeasureDom⟩
is defined as the return type of the unary calculated measure ⟨cubeMeasure⟩ (Line 18), e.g.,

CHAPTER 5. PATTERN DEFINITION 56

∃⟨cubeMeasureDom⟩∈ DE : derivation(⟨cubeMeasureDom⟩) = ⟨cubeMeasure⟩. The name of
the value set returned by the ⟨cubeMeasure⟩ business term can then be bound to the derived
element ⟨cubeMeasureDom⟩. ♢

We introduce local cubes to avoid the definition of complex constraints and to make the
description of the solution more understandable, as they allow to refer to specific parts of
a pattern’s template (which is necessary to explain complex analytical queries). Complex
analytical queries typically involve subqueries, the result of which can be thought of as
interim local cubes that derive from some base cube and exist only in the context of the
query. For example, the comparison of two aggregated measures for separate groups of
facts requires the computation of an interest cube and a comparison cube with the measure
that should be compared having been aggregated at the desired level of granularity prior
to computing the comparative measure. In a pattern definition, the comparative measure
could be simply constrained to the interest and comparison cubes, which must provide the
necessary aggregation measures. Without these local cubes, the comparison measure would
have to be constrained to both the base cube and the business terms that represent the
necessary aggregation measures for that base cube.

Definition 12 (Local Cubes). A pattern p’s local cubes are defined by a set of names
Nloc used to describe local cubes, i.e., Nloc = NQ::loc ∪ NP ::loc, with the subsets of cube
names NQ::loc, i.e., NQ::loc ∩ NQ = ∅, and property names of local cubes NP ::loc, and the
relations:

• hasTypeloc ⊆ NQ::loc × {Q} representing the pattern’s local cubes,

• hasPropertyloc ⊆ NQ::loc × {M, R} × (PPP ∪ NP ::loc) representing the pattern’s
local cube properties,

• and hasDomainloc ⊆ NQ::loc × (PPP ∪ NP ::loc) × (PVV ∪ PVD) representing the
pattern’s local cube properties’ domain.

A pattern includes definitions of the structure of local cubes as part of the context
specification. For each local cube, the context specification defines a name by which it is
referred to in the query, a number of measures, and the domain of each measure. It should
be noted that a local cube’s properties depend on the multidimensional model elements
actually bound to pattern parameters and derived elements upon instantiation.

Example 5.3 (Local Cubes). The template of the breed-specific subset-subset comparison
represents the core OLAP query structure as described by the solution (Figure 2.6–Solution).

CHAPTER 5. PATTERN DEFINITION 57

The local cubes baseCube (Figure 2.6–Template, Lines 1-8), interestCube (Lines 9-19), and
comparisonCube (Lines 20-30) are the result of subqueries in the template. The baseCube is
not represented as a local cube, as it is directly based on the ⟨sourceCube⟩ cube and it is not
defined as an application target for business terms representing calculated measures (Fig-
ure 2.5–Context, Lines 39-45). Only the local cubes interestCube and comparisonCube are
represented, as their calculated measures, which are described by the name of ⟨cubeMeasure⟩
and its the return type (⟨cubeMeasureDom⟩), are further used for calculations (Lines 21-
28), e.g., (“interestCube”, Q) ∈ hasTypeloc, (“interestCube”, M, ⟨cubeMeasure⟩) ∈
hasPropertyloc, and (“interestCube”, ⟨cubeMeasure⟩, ⟨cubeMeasureDom⟩) ∈ hasDomainloc.

♢

Pattern constraints represent conditions that have to be satisfied by elements of the
associated eMDM or by the local cubes, referred to by name in the definition or instantiation
of a pattern (see Chapter 6), in order for the pattern to be applicable in the context of a
data warehouse system. Pattern constraints are similar to business term constraints (see
Chapter 4 — Definition 6) but in addition to type, property, and domain constraints a
pattern can also have return and applicable-to constraints. A return constraint requires
the business terms bound to certain pattern parameters or constants to have a certain
return type. An applicable-to constraint requires business terms bound to certain pattern
parameters or constants to be applicable to particular entities; the application of the business
term must be valid in the context of the associated eMDM and the pattern’s local cubes
(see Chapter 4 —Definition 8). Such applicable-to constraints can either be unary or binary,
depending on the number of context parameters of the constrained business term.

Definition 13 (Pattern Constraints). A pattern p’s pattern constraints are represented by
the following relations:

• CT ⊆ (PVE ∪ PVV ∪ PPB ∪ NE ∪ NQ::loc ∪ NV ∪ NB) ×O that represents p’s type
constraints,

• CP ⊆ (PVE ∪NE ∪NQ::loc)×P× (PPP ∪NP ∪NP ::loc) that represents p’s property
constraints,

• CD ⊆ (PVE ∪ NE ∪ NQ::loc) × (PPP ∪ NP ∪ NP ::loc) × (PVV ∪ PVD ∪ NV ∪ ND)
that represents p’s domain constraints,

• CR ⊆ (PVQM ∪NQMU ∪NQMB)× (PVU ∪NU) that represents the pattern’s return
constraints,

• CA1 ⊆ (PPB ∪ NB) × (PVE ∪ NE ∪ NQ::loc) that represents p’s unary applicable-to
constraints,

CHAPTER 5. PATTERN DEFINITION 58

• and CA2 ⊆ (PPB ∪ NB) × (PVE ∪ NE ∪ NQ::loc) × (PVE ∪ NE ∪ NQ::loc) that
represents p’s binary applicable-to constraints.

Example 5.4 (Pattern Constraints). The breed-specific subset-subset comparison pattern
has four property constraints defined (see Figure 2.5—Context visualized in Figure 5.2), two
of which require that a dimension role named Cattle has to be part of the entity referred
to by the parameter ⟨sourceCube⟩ (Line 31) and that a Level named Main Breed has to
be part of an entity referred to by the ⟨baseDim⟩ derived element (Line 35), respectively,
i.e., (⟨sourceCube⟩, R, “Cattle”) ∈ CP and (⟨baseDim⟩, L, “Main Breed”) ∈ CP . Four
domain constraints are defined, one of which requires that a property named Main Breed

of an entity referred to by the derived element ⟨baseDim⟩ with a domain named Breed

Name exists (Line 36), i.e., (⟨baseDim⟩, “Main Breed”, “Breed Name”) ∈ CD. The
pattern definition, furthermore, comprises six unary applicable-to constraints, which require
that, for example, the business term bound to the parameter ⟨baseDimSlice⟩ during pat-
tern instantiation is applicable to an entity referred to by the derived element ⟨baseDim⟩
(Line 39), i.e., (⟨baseDimSlice⟩,⟨baseDim⟩) ∈ CA1, and one binary applicable-to constraint
defines that ⟨compMeasure⟩ is required to be applicable to the local cubes interestCube and
comparisonCube (Line 45), i.e., (⟨compMeasure⟩, “interestCube”, “comparisonCube”) ∈
CA2. ♢

Each derivation rule also implicitly represents a constraint. A derivation rule involving
property of an entity implicitly defines a domain constraint, where the domain is represented
by the corresponding derived element. A derivation rule involving the return type of a
business term implicitly defines a return constraint, i.e., it restricts the expected return type
of a calculated measure to the corresponding derived element.

Definition 14 (Derived Pattern Constraints). For a pattern p, pattern constraints can be
derived as follows:

• a domain constraint is derived for each derived element with a derivation rule involving
the domain of a property, i.e., ∀v ∈ DE : ∃y ∈ (PVE ∪ NE) ∃y′ ∈ (PPP ∪ NP) :
derivation(v) = (y, y′) ⇒ (y, y′, v) ∈ CD,

• a return constraint is derived for each derived element with a derivation rule involving
the return type of a business term, i.e., ∀v ∈ DE : ∃y ∈ (PVQM ∪ NQMU ∪ NQMB) :
derivation(v) = y ⇒ (y, v) ∈ CR.

Example 5.5 (Derived Pattern Constraints). In the breed-specific subset-subset com-
parison (Figure 2.5—Context) three domain constraints can be derived for the derived
elements ⟨baseDim⟩, ⟨compDim⟩, and ⟨joinDim⟩ that reference corresponding dimensions

CHAPTER 5. PATTERN DEFINITION 59

(Lines 15-17), i.e., {(⟨sourceCube⟩, ”Cattle”, ⟨baseDim⟩), (⟨sourceCube⟩, ⟨compDimRole⟩,
⟨compDim⟩), (⟨sourceCube⟩, ⟨joinDimRole⟩, ⟨joinDim⟩)} ∈ CD, and one return constraint
can be derived for the derived element ⟨cubeMeasureDom⟩ (Line 18), i.e., (⟨cubeMeasure⟩,
⟨cubeMeasureDom⟩)} ∈ CR. ♢

Finally, a pattern must be well-formed in order to be used, i.e., there must not exist circular
definitions of derivation rules.

Definition 15 (Well-Formed Pattern). A pattern p is well-formed if, and only if, the
derivation rules defined for properties are acyclic. Let DR ⊆ DE × (PVE ∪ NE) denote the
direct derivation relationships, then ∀y ∈ DE ∀y′ ∈ (PVE ∪ NE) : (∃y′′ ∈ (PPP ∪ NP) :
derivation(y) = (y′, y′′)) ⇔ DR(y, y′). Let DR+ denote the transitive closure of DR,
then ∀y ∈ (PVE ∪ NE) : (y, y) ̸∈ DR+.

Example 5.6 (Well-Formed Pattern). The breed-specific subset-subset comparison is well-
formed since the derivation rules involving the domains of properties (Lines 16-17) are
acyclic. ♢

5.2 Graphical Pattern Notation

Pattern documentation consists of the pattern’s name and alias names, a textual description
of the problem to be solved, a formal definition of the context as represented by parameters
and derived elements as well as both constraints and local cubes, a textual description of
the solution, possibly with an informal illustration, a number of templates in various target
languages, and a list of related patterns (see Figure 5.1 for the notation, Figure 2.5, and
Figure 2.6). Due to space considerations, the example usage is omitted in the documentation
of breed-specific subset-subset comparison in Figure 2.5 and Figure 2.6; usage of this pattern
is illustrated in the running example of this thesis.

Pattern context can be visualized by representing the parameters, derived elements, con-
straints, local cubes, and constants as following the context notation for patterns (see
Figure 5.3 and Figure 5.2 for an example). Parameters and derived elements are represented
by their names inside angle brackets – not to be confused with the names bound to the
parameters and derived elements during instantiation – while name constants are included
as is. Derived elements are prefixed with a slash; the corresponding derivation rules are
represented by domain and return constraints. The notation of multidimensional models
and business terms is reused in a simplified fashion – depicting only the business term’s
name with entity, arity, and function markers and if necessary the return type represent-
ing return constraints – to visualize type constraints. Domain and property constraints

CHAPTER 5. PATTERN DEFINITION 60

Solution

Problem

Also Known As

(⟨p name⟩ (',' ⟨p name⟩)*)?

⟨prob txt⟩

Related Pattern

Example

Template

⟨sol txt⟩

⟨p name⟩

(⟨param decl⟩ | ⟨derv decl⟩ | ⟨cstr decl⟩ | ⟨lc decl⟩)*

(⟨p name⟩ (',' ⟨p name⟩)*)?

⟨ex txt⟩

Pattern Definition:

⟨temp elem⟩

Context

Figure 5.1: Pattern notation

are represented by visualizing the entities and properties eMDM notation. Applicable-to
constraints are visualized by relating a parameter or name constant denoting a business
term to a parameter, derived element, or name constant denoting an entity using a dashed
arrow for each business term parameter. In order to distinguish the context parameters for
business terms, the context parameters’ names are added to the dashed arrows. Finally,
local cubes are visualized by reusing the notation for type, property, and domain constraints
except that dotted lines are used instead of solid lines.

<ctx>
<sourceCube>

Cattle
<ctx>

<compDim>

<compDimRole><compDimRole>

 <joinDim>

<joinDimRole>

 <compDim>

 <baseCubeSlice>

<iDimSlice> <cDimSlice>

/<baseDim>

<baseDimSlice>

<ctx>

 <cubeMeasure>

<ctx>

<groupCond>

Main Breed:
Breed Name

1

1

1 1 1

1

<ctx> <ctx>

<ctx>[2]<ctx>[1]
 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

Figure 5.2: Illustration of the Context section of breed-specific subset-subset comparison
from Figure 2.5

CHAPTER 5. PATTERN DEFINITION 61

aDimRoleNameaDimRoleName

aCubeNameaCubeName

anAttributeNameanAttributeNameanAttributeName

aLevelNameaLevelName

A cube has a measure

A unary business term is
defined to be applicable to

a dimension (using the
dimension as the business
term’s context parameter)

A binary business term is
defined to be applicable to
a cube (using the cube as

the business term’s
context parameters)

aTermNameaTermName
⟨FM⟩

aLevelName

1*

Property Constraints:

A cube has a dimension
role

A dimension has a level

A dimension has an
attributeanAttributeName

Domain Constraints:

A measure of a cube
has a number value set

as domain

aDimRoleNameaDimRoleName

aDimName

A dimension role of a
cube has a dimension

as domain

aLevelName:
aValueSetName

A level of a dimension has
number a value set as

domain

Unary and Binary Applicable-to Constraints:

Type Constraints:

A cube exists

A measure of a cube
exsists

A business term exists

A dimension exists

An attribute of an
dimension exists

A level of a dimension
exists

A dimension role of a
cube exists

 aMeasureName:
 aValueSetName
 aMeasureName:
 aValueSetName

An attribute of a
dimension has a string
value set as domain

3*

3*

3*

anAttrName:
aValueSetName

the notation of local cubes with properties and their
domains corresponds to the notation of type, property,
and domain constraints except that for type constraints
solid lines are dotted.

derivation rules are represented by domain and return
constraints.

Return Constraints:

aTermName

aValueSet

A calculated measure
has a number value set

as its return type

<ctx>[2]<ctx>[2]

2,4*

2,4*

2*

2*

22

3*

3*

1*

2*

<ctx>[1]<ctx>[1]

aTermNameaTermName
⟨FM⟩

<ctx><ctx>

11

 aMeasureName aMeasureName

aTermNameaTermName
⟨EM⟩ ⟨FM⟩⟨AM⟩

 aMeasureName aMeasureName

aDimRoleNameaDimRoleName

3*

the entity, arity and functionality markers correspond
to those in the Business Term Notation.

derived elements are prefixed with a '/' in the
visualization to distinguish them from pattern
parameters.

aDimName

4*

Figure 5.3: Notation for the context of patterns

Chapter 6
Pattern Usage

In this chapter we formalize the steps necessary to use patterns in the context of an
associated enriched multidimensional model. For this purpose, in Section 6.1 we provide a
formal definition of pattern operations, i.e., instantiation and grounding of patterns, and
pattern states, i.e., parameter-free, grounded, and applicable pattern. Finally, Section 6.2
describes how to execute an applicable patterns to obtain the executable OLAP query.

6.1 Pattern Instantiation and Grounding

The proposed pattern-based approach supports automatic query generation when using a
pattern associated to an eMDM in the context of a specific data warehouse that follows
that associated eMDM (see Figure 2.3). To this end, the user instantiates a pattern, first,
by binding names of model elements available in the associated eMDM to the pattern
parameters resulting in a parameter-free pattern. Second, the parameter-free pattern is
then grounded in the context of the associated eMDM, which leads to the resolution of
derived elements via the derivation rules, resulting in a ground pattern. Finally, if the
ground pattern is applicable to the associated eMDM – while also considering the pattern’s
local cubes –, i.e., all the pattern constraints can be satisfied, the ground pattern can be
executed, i.e., the template can be transformed into an executable query for a target system.
In this chapter, we formalize the notion of pattern instantiation and pattern grounding
while also discussing the notion of pattern execution. Although part of pattern usage, we
do not describe the actual processing of the generated query, which is performed by the
data warehouse system and not specific to the proposed pattern-based approach.

62

CHAPTER 6. PATTERN USAGE 63

1 DERIVED ELEMENTS

2 <baseDim >: DIMENSION <= "Milking"."Cattle";

3 <compDim >: DIMENSION <= "Milking"."Cattle";

4 <joinDim >: DIMENSION <= "Milking"."Farm";

5 <cubeMeasureDom >: NUMBER_VALUE_SET <= "Average Milk Yield".RETURNS;

6 END DERIVED ELEMENTS;

7

8 LOCAL CUBES

9 "interestCube":CUBE;

10 "interestCube" HAS MEASURE "Average Milk Yield";

11 "interestCube"."Average Milk Yield":<cubeMeasureDom >;

12 "comparisonCube":CUBE;

13 "comparisonCube" HAS MEASURE "Average Milk Yield";

14 "comparisonCube"."Average Milk Yield":<cubeMeasureDom >;

15 END LOCAL CUBES;

16

17 CONSTRAINTS

18 "Milking":CUBE;

19 "Low Daily Milk Yield":UNARY_CUBE_PREDICATE;

20 "Holstein":UNARY_DIMENSION_PREDICATE;

21 "Young Cattle":UNARY_DIMENSION_PREDICATE;

22 "Old Cattle":UNARY_DIMENSION_PREDICATE;

23 "Per Farm":DIMENSION_GROUPING;

24 "Average Milk Yield":UNARY_CALCULATED_MEASURE;

25 "Average Milk Yield Ratio":BINARY_CALCULATED_MEASURE;

26

27 "Milking" HAS DIMENSION_ROLE "Cattle";

28 "Milking" HAS DIMENSION_ROLE "Farm";

29 "Milking"."Cattle":<baseDim >;

30 <baseDim > HAS LEVEL "Main Breed";

31 <baseDim >."Main Breed":"Breed Name";

32 "Milking"."Cattle":<compDim >;

33 "Milking"."Farm":<joinDim >;

34 "Average Milk Yield" RETURNS <cubeMeasureDom >;

35

36 "Holstein" IS_APPLICABLE_TO <baseDim >;

37 "Low Daily Milk Yield" IS_APPLICABLE_TO "Milking";

38 "Young Cattle" IS_APPLICABLE_TO <compDim >;

39 "Old Cattle" IS_APPLICABLE_TO <compDim >;

40 "Per Farm" IS_APPLICABLE_TO <joinDim >;

41 "Average Milk Yield" IS_APPLICABLE_TO "Milking";

42 "Average Milk Yield Ratio" IS_APPLICABLE_TO

("interestCube","comparisonCube");

43 END CONSTRAINTS;

Listing 6.1: Derivation rules, local cubes, and constraints of dairy- and breed-
specific subset-subset comparison as a result of instantiation in Listing 2.1

CHAPTER 6. PATTERN USAGE 64

We use the notion of pattern variable substitution for the definition of pattern instantiation.
Pattern variables are substituted in the constraints, derivation rules, templates, and local
cubes with names of elements according to a substitution function, representing the binding
of names to variables. The result of pattern instantiation is a new pattern with a reduced
set of pattern parameters where all substituted parameters from the original pattern are
not included. As pattern variables are being removed during pattern variable substitution,
the variable’s declared type should nevertheless not be lost, i.e., for entity, value set, and
business term pattern variables, corresponding type constraints, and for property pattern
variables that are used in domain constraints, corresponding property constraints are derived.

Definition 16 (Pattern Variable Substitution). The application pσ of a partial substitution
function σ : PV → N to a pattern p = (O, PP , DE, pvtype, derivation, CT , CP ,
CD, CR, CA1, CA2, TPL, Nloc, hasTypeloc, hasPropertyloc, hasDomainloc) returns
a new pattern p′ = (O, PP ′, DE′, pvtype′, derivation′, CT ′, CP ′, CD′, CR′, CA1′,
CA2′, TPL′, Nloc, hasTypeloc, hasProperty′

loc, hasDomain′
loc) where

• pattern variables with a name bound are removed, i.e., PP ′ = PP \ {v ∈ PP | σ(v)
is defined} and DE′ = DE \ {v ∈ DE | σ(v) is defined},

• type declarations for PV ′ are taken over, i.e., ∀v ∈ PV ′ : pvtype′(v) = pvtype(v),

• derivation rules for DE′ are taken over, i.e., ∀v ∈ DE′ : derivation′(v) =
derivation(v) with variables in the codomain of derivation substituted according
to σ,

• type constraints for substituted pattern variables representing entities, business terms,
and value sets are derived, i.e., CT ′ = {(σ(v), pvtype(v))|v ∈ (PVE ∪PVB ∪PVV)∧
σ(v) is defined} ∪ CT ,

• property constraints for substituted pattern variables representing properties are
derived, i.e., CP ′ = {(y, pvtype(v), σ(v))|∃y ∈ (PVE ∪NE ∪NQ::loc) ∃y′ ∈ (PVD ∪
PVV ∪ ND ∪ NV) : v ∈ PPP ∧ σ(v) is defined ∧ (y, v, y′) ∈ CD} ∪ CP with
variables in CP ′ substituted according to σ,

• and CD′, CR′, CA1′, CA2′, TPL′, hasProperty′
loc, hasDomain′

loc correspond
to CD, CR, CA1, CA2, TPL, hasPropertyloc, hasDomainloc respectively, with
variables substituted according to σ.

Definition 17 (Pattern Instantiation). An instantiation δp
σ of a well-formed pattern p given

a partial substitution function σ : PP → N , with PP the set of p’s pattern parameters,
corresponds to pσ, the application of σ to p.

CHAPTER 6. PATTERN USAGE 65

Example 6.1 (Pattern Instantiation). Consider the definition of breed-specific subset-subset
comparison pattern (Figure 2.5 and Figure 2.6). Listing 2.1 shows an instantiation of breed-
specific subset-subset comparison with bindings for each of the pattern’s parameters. For
example, the name Holstein, denoting a business term in the dairy domain, is bound to the
⟨baseDimSlice⟩ parameter (Listing 2.1, Line 5). Parameters from the instantiated pattern
for which a binding is specified are not part of the resulting pattern’s set of parameters.
For example, since the name Holstein is bound to the ⟨baseDimSlice⟩ parameter during
instantiation, ⟨baseDimSlice⟩ is not a parameter of the resulting pattern; however, a type
constraint is derived stating that a Holstein business term is expected to be available.
Listing 6.1 shows the context specification of a pattern that is equivalent to the result of the
pattern instantiation in Listing 2.1; it should be noted that the lack of parameters in that
pattern. Compared to the original pattern definition (Figure 2.5—Context), the definition
in Listing 6.1, while corresponding to the original pattern, has all occurrences of the
parameters from the original pattern substituted with name constants in the derivation rules
(Listing 6.1, Lines 1-6), local cubes (Lines 8-15), and constraints (Lines 17-43). Likewise,
the template corresponds to the original pattern’s template (Figure 2.5—Template) with
occurrences of parameters substituted with name constants. It should be noted that for
each bound pattern parameter representing an entity or a business term a corresponding
type constraint is derived (Lines 18-25), while for bound pattern parameter representing a
property a corresponding property constraint is derived (Lines 27-28). To avoid redundancy,
derived constraints that convey the same information are depicted only once. ♢

Pattern instantiation does not necessarily mean substitution of all of a pattern’s parameters.
Partial instantiation can be a means for stepwise refinement from more generic to more spe-
cific patterns, gradually reducing a pattern’s level of abstraction. Thus, partial instantiation
serves for the organization of patterns into comprehensive pattern catalogs (see Chapter 7).
Only a parameter-free pattern, however, can be grounded and executed in the context of a
particular data warehouse; a parameter-free pattern cannot be further instantiated.

Definition 18 (Parameter-Free Pattern). A pattern p is parameter-free if, and only if, it is
well-formed and the set of pattern parameters is empty, i.e., PP = ∅.

Example 6.2 (Parameter-Free Pattern). The dairy- and breed-specific subset-subset com-
parison pattern (Listing 6.1) corresponds to the result of a complete instantiation of the
breed-specific subset-subset comparison pattern (see Listing 2.1) and is parameter-free since
it has no parameters. ♢

CHAPTER 6. PATTERN USAGE 66

1 LOCAL CUBES

2 "interestCube":CUBE;

3 "interestCube" HAS MEASURE "Average Milk Yield";

4 "interestCube"."Average Milk Yield":"Liquid In Liter";

5 "comparisonCube":CUBE;

6 "comparisonCube" HAS MEASURE "Average Milk Yield";

7 "comparisonCube"."Average Milk Yield":"Liquid In Liter";

8 END LOCAL CUBES;

9

10 CONSTRAINTS

11 "Milking":CUBE;

12 "Low Daily Milk Yield":UNARY_CUBE_PREDICATE;

13 "Holstein":UNARY_DIMENSION_PREDICATE;

14 "Young Cattle":UNARY_DIMENSION_PREDICATE;

15 "Old Cattle":UNARY_DIMENSION_PREDICATE;

16 "Per Farm":DIMENSION_GROUPING;

17 "Average Milk Yield":UNARY_CALCULATED_MEASURE;

18 "Average Milk Yield Ratio":BINARY_CALCULATED_MEASURE;

19 "Animal":DIMENSION;

20 "Farm":DIMENSION;

21 "Liquid In Liter":NUMBER_VALUE_SET;

22

23 "Milking" HAS DIMENSION_ROLE "Cattle";

24 "Milking" HAS DIMENSION_ROLE "Farm";

25 "Milking"."Cattle":"Animal";

26 "Animal" HAS LEVEL "Main Breed";

27 "Animal"."Main Breed":"Breed Name";

28 "Milking"."Cattle":"Animal";

29 "Milking"."Farm":"Farm";

30 "Average Milk Yield" RETURNS "Liquid In Liter";

31

32 "Holstein" IS_APPLICABLE_TO "Animal";

33 "Low Daily Milk Yield" IS_APPLICABLE_TO "Milking";

34 "Young Cattle" IS_APPLICABLE_TO "Animal";

35 "Old Cattle" IS_APPLICABLE_TO "Animal";

36 "Per Farm" IS_APPLICABLE_TO "Farm";

37 "Average Milk Yield" IS_APPLICABLE_TO "Milking";

38 "Average Milk Yield Ratio" IS_APPLICABLE_TO

("interestCube","comparisonCube");

39 END CONSTRAINTS;

Listing 6.2: Derivation rules and constraints of grounded dairy- and breed-specific
subset-subset comparison as a result of grounding in Listing 6.4

CHAPTER 6. PATTERN USAGE 67

1 WITH baseCube AS (

2 SELECT *

3 FROM "Milking" sc

4 JOIN "Animal" a ON

5 sc."Cattle" = a.$dimKey("Animal")

6 WHERE $expr("Mid Lactation Phase", sc) AND

7 $expr("Holstein", a)

8),

9 interestCube AS (

10 SELECT $expr("Per Farm", jd),

11 $expr("Average Milk Yield", bc) AS "Average Milk Yield"

12 FROM baseCube bc

13 JOIN "Farm" jd ON

14 bc."Farm" = jd.$dimKey("Farm")

15 JOIN "Animal" cd ON

16 bc."Cattle" = cd.$dimKey("Animal")

17 WHERE $expr("Young Cattle", cd)

18 GROUP BY $expr("Per Farm", jd)

19),

20 comparisonCube AS (

21 SELECT $expr("Per Farm", jd),

22 $expr("Average Milk Yield", bc) AS "Average Milk Yield"

23 FROM baseCube bc

24 JOIN "Farm" jd ON

25 bc."Farm" = jd.$dimKey("Farm")

26 JOIN "Animal" cd ON

27 bc."Cattle" = cd.$dimKey("Animal")

28 WHERE $expr("Old Cattle", cd)

29 GROUP BY $expr("Per Farm", jd)

30)

31 SELECT $expr("Per Farm", ic),

32 ic."Average Milk Yield" AS "Group of Interest",

33 cc."Average Milk Yield" AS "Group of Comparison"

34 $expr("Average Milk Yield Ratio", ic, cc) AS "Average Milk

Yield Ratio"

35 FROM interestCube ic

36 JOIN comparisonCube cc ON

37 $expr("Per Farm", ic) = $expr("Per Farm", cc)

Listing 6.3: Grounded template for grounded dairy- and breed-specific subset-
subset comparison

CHAPTER 6. PATTERN USAGE 68

A parameter-free pattern is not necessarily free of variables: Values for derived elements
must be obtained through pattern grounding with respect to the associated eMDM. Pattern
grounding corresponds to the application of a substitution to a parameter-free pattern where
the derivation rules determine the substitution of variables with names of elements from
the associated eMDM while also considering the pattern’s local cubes. All derived-element
variables in derivation rules, constraints, templates, and local cubes for which a binding
could be determined are replaced with the determined name.

Definition 19 (Pattern Grounding). The grounding of a parameter-free pattern p in an
enriched multidimensional model s is given by ∆p

s, the application pσ of a substitution
σ : DE → N to p, where DE is the set of p’s derived elements and σ is derived according
to p’s definite derivation rules. A derivation rule of a derived element is definite if the
first compartment of the codomain is a name or a derived element v′ ∈ DE where
σ(v′) is defined. The substitution function σ is derived from s according to p’s acyclic
derivation rules by repeating the following steps as long as a derived element v ∈ DE exists
with derivation(v) is definite and σ(v) is undefined:

1. evaluate derivation rules involving the return type of a named business term, i.e.,
∀v ∈ DE : ∃n ∈ NB ∃n′ ∈ NU : derivation(v) = n ∧ (n, n′) ∈ hasReturn ⇒
σ(v) = n′

2. evaluate derivation rules involving the domain of a property of a named entity,
i.e., ∀v ∈ DE : ∃n ∈ (NE ∪ NQ::loc) ∃n′ ∈ (NP ∪ NP ::loc) ∃n′′ ∈ (ND ∪
NV) : derivation(v) = (n, n′) ∧ ((n, n′, n′′) ∈ hasDomainloc ∨ (n, n′, n′′) ∈
hasDomain) ⇒ σ(v) = n′′

3. evaluate derivation rules involving the domain of a property of an entity referred
to by a derived element where σ is defined, i.e., ∀v ∈ DE : ∃v′ ∈ DE ∃n ∈
(NP ∪ NP ::loc) ∃n′ ∈ (ND ∪ NV) : derivation(v) = (v′, n) ∧ σ(v′) is defined ∧
((σ(v′), n, n′) ∈ hasDomainloc ∨ (σ(v′), n, n′) ∈ hasDomain) ⇒ σ(v) = n′

1 GROUND PATTERN "Dairy - and Breed -Specific Subset -Subset Comparison"

2 AS "Grounded Dairy - and Breed -Specific Subset -Subset Comparison"

3 FOR "Happy Milk eMDM";

Listing 6.4: Grounding of the dairy- and breed-specific subset-subset comparison

Example 6.3 (Pattern Grounding). In Listing 6.4, the dairy- and breed-specific subset-
subset comparison is grounded to Happy Milk’s eMDM (Figure 4.4). After instantiation, the

CHAPTER 6. PATTERN USAGE 69

derivation rule for ⟨compDim⟩, for example, defines that the name to be bound can be derived
from the domain of a property named Cattle that is owned by an entity named Milking

(Listing 6.1, Line 3). The evaluation of this derivation rule with respect to Happy Milks’
eMDM (Listing 4.1, Line 8) returns the name Animal, which substitutes for all occurrences
of the derived element ⟨compDim⟩ in constraints, derivation rules, and templates (Listing 6.2
and Listing 6.3). It should be noted that a corresponding type constraint is derived for
⟨compDim⟩ and its bound name Animal (Listing 6.2, Line 19). ♢

Ideally, the result of pattern grounding is a ground pattern, i.e., a pattern without parameters
and derived elements. If all derivation rules can be evaluated properly in the context of the
associated eMDM and the pattern’s local cubes, the result of pattern grounding is a ground
pattern. Otherwise, the associated eMDM or the pattern’s local cubes do not contain all of
the required model elements for using the pattern. The proper evaluation of the derivation
rules is part of the contract specified in the pattern’s context.

Definition 20 (Ground Pattern). A pattern p is ground if, and only if, p is parameter-free
and the set of derived elements is empty, i.e., DE = ∅.

Example 6.4 (Ground Pattern). The grounding of dairy- and breed-specific subset-subset
comparison pattern to the associated eMDM for HappyMilk yields a ground pattern which
is free of derived elements since all derivation rules could be evaluated (Listing 6.2). ♢

In order for a ground pattern to be applicable, either the associated eMDM or the pattern’s
local cubes, i.e., template(s), must provide elements that comply to the pattern’s grounded
type, property, domain, and return constraints. Furthermore, each applicable-to constraint
– specifying names of argument entities for a business term – mandates a check whether
application of each business term using the indicated entity names as arguments yields a
valid business term application.

Definition 21 (Applicable Pattern). A ground pattern p associated to an enriched multidi-
mensional model s is applicable in a data warehouse conforming to s if, and only if, the
constraints in p are satisfied over s or p’s local cubes, i.e., CT ⊆ (hasType ∪ hasTypeloc),
CP ⊆ (hasProperty ∪ hasPropertyloc), CD ⊆ (hasDomain ∪ hasDomainloc), CR ⊆
hasReturn, and each applicable-to constraint must be satisfied over s:

1. For each name referring to a business term in an applicable-to constraint there must
be a corresponding business term in s with an appropriate type, i.e., ∀n ∈ NB ∀n′ ∈
NE : (n, n′) ∈ CA1 ⇒ ∃T ∈ {QMU, QPU, QO, DG, DPU, DO} : (n, T) ∈ hasType

and ∀n ∈ NB ∀n′, n′′ ∈ NE : (n, n′, n′′) ∈ CA2 ⇒ ∃T ∈ {QMB, QPB, DPB}) :
(n, T) ∈ hasType.

CHAPTER 6. PATTERN USAGE 70

2. For each business term b in s, let n denote its name in s, i.e., (n, b) ∈ hasTerm,

• if (n, n′) ∈ CA1 for any n′ ∈ (NE ∪ NQ::loc) then the application δb
σ with

σ(⟨ctx⟩) = n′, or

• if (n, n′, n′′) ∈ CA2 for any n′, n′′ ∈ (NE ∪ NQ::loc) then the application δb
σ

with σ(⟨ctx⟩[1]) = n′ and σ(⟨ctx⟩[2]) = n′

must be a valid business term application over s extended by p’s local cubes.

Example 6.5 (Applicable Pattern). The grounded dairy- and breed-specific subset-subset
comparison pattern is applicable to its associated eMDM since elements that have names
as specified in the pattern and comply with the constraints are available in the eMDM or in
the pattern’s set of local cubes, respectively. ♢

6.2 Pattern Execution

An applicable pattern can be automatically translated into an OLAP query for execution in
a target system, the logical data model of which is represented by the associated eMDM. To
this end, macro calls in the pattern’s template for a target system must be processed first.
The macro calls are parameterized and represent necessary preprocessing functionalities
(see for details Table 2.1). Processing of the macro calls then returns code snippets that
replace the corresponding macro calls in the template.

The arguments bound to the parameters of the macros are simply considered as strings that
reference corresponding eMDM elements either directly by specifying the corresponding
name or implicitly by aliasing. It should be noted that the alias is only available within
a specific template. The preprocessing of the macro calls does not perform any check of
the arguments passed, as it is assumed that only applicable patterns are executed, i.e., the
eMDM elements referenced by the passed strings fulfil all necessary constraints.

1 EXECUTE PATTERN "Grounded Dairy - and Breed -Specific Subset -Subset

Comparison"

2 FOR "Happy Milk eMDM"

3 WITH TEMPLATE

4 DATA_MODEL = "Relational",

5 VARIANT = "Star Schema",

6 LANGUAGE = "SQL",

7 DIALECT = "ORACLEv11";

Listing 6.5: Execution of the grounded and applicable dairy- and breed-specific subset-
subset comparison

CHAPTER 6. PATTERN USAGE 71

Example 6.6 (Execute Pattern). The statement in Listing 6.5 executes the grounded
and applicable dairy- and breed-specific subset-subset comparison pattern to obtain an
executable OLAP query (Listing 2.2) that is based on the pattern’s grounded template
(Listing 6.3), i.e., that is executable for a relational system realized as star schema using
SQL with the Oraclev11 dialect. To this end, the macro call $expr("Average Milk Yield",

bc) (Listing 6.3, Line 11), for example, is being processed by substituting the parameter
⟨ctx⟩ (Listing 4.3, Line 1) by bc in the template expression (Listing 4.4, Line 10) in order to
obtain the grounded template expression (Listing 2.2, Line 11) which takes the place of the
macro call $expr("Average Milk Yield", bc) in the template. It should be noted that bc
is defined as an alias for the baseCube common table expression (Listing 6.3, Line 12), which
in turn references the reduced Milking source cube that fulfils the specified constraints. In
addition, the macro call $dimKey("Farm") (Listing 6.3, Line 14), for example, is processed
to return Farm Id which is used to replace the macro call $dimKey("Farm"). ♢

Automatic code generation using the presented macros requires the logical model to adhere
to certain conventions. In particular, the logical model must be a star schema with
denormalized dimension tables where the table names correspond to the entity names
in an eMDM and the column names correspond to property names. Mazón and Trujillo
that developed an model-driven architecture for data warehouses also assuming an star
schema realization [84]. We stress, though, that the pattern approach would also work
with other forms of organization. The naming convention between conceptual and logical
representation of model elements can, for example, be omitted by capturing additional
mapping information. One mapping table per data warehouse system can be introduced
with an entry for each model element name and the corresponding name used in the logical
representation. The model element name used for entities consists of their unique name
whereas for properties the name prefixed by the name of the owning entity is used. The
templates and expression snippets have to be extended by the $map macro to consider this
additional mapping information. The $map macro translates names that refer to model
elements to the name of the corresponding logical representation by utilizing the available
mapping table. Furthermore, snowflake schemas can be supported by capturing which
normalized dimension tables exist and how they can be joined. This would allow for
denormalizing dimensions with a corresponding macro. However, in this thesis we followed
the convention over configuration paradigm.

Chapter 7
Pattern Organization

In this chapter we describe how OLAP patterns can be defined at different levels of
abstraction. In particular, we distinguish – from more abstract to more specific – domain-
independent (Section 7.2), domain-specific (Section 7.3), and organization-specific (Section
7.4) patterns. These levels of abstraction may inform the collection of patterns into
comprehensive pattern catalogs (Section 7.5). Likewise, the business terms of an eMDM
may be collected into business term vocabularies, while cubes and dimensions of an eMDM
may be collected into multidimensional models at different levels of abstraction.

7.1 Levels of Abstraction

An abstraction level groups patterns that share the same business vocabulary. Patterns of a
particular abstraction level either refer to the same generic business vocabulary (domain-
independent), the same business vocabulary for a particular domain (domain-specific), or
the same business vocabulary that can only be understood within a particular organization
(organization-specific). The business vocabularies that are referenced by the OLAP patterns
are eMDMs, which consist of different types of elements, i.e., business terms, cubes, and
dimensions. Thus, just like the patterns themselves, the referenced eMDM elements are
grouped into abstraction levels.

The organization of patterns along abstraction levels – from domain-independent to domain-
specific and organization-specific – can promote the discoverability of OLAP patterns for
target audiences and application areas, thereby facilitating the reuse of OLAP patterns
across domains. This organization of OLAP patterns is inspired by the work of Silverston
and Agnew, who define data model patterns at different levels of abstraction, from industry-
specific (domain-specific) data model patterns [41] to patterns for all enterprises (domain-
independent) [42], [46]. In contrast to Silverston and Agnew [42, p. 7-14], we use only

72

CHAPTER 7. PATTERN ORGANIZATION 73

three levels of abstraction instead of four since we believe that the distinction between, in
particular, Pattern Level 1 and Pattern Level 2 is too subjective. Nevertheless, we share
the same motivation as Silverston and Agnew, i.e., the more specific a pattern is, the
more static it becomes. To assign a specific pattern to a corresponding abstraction level,
the following principle is applied. If a pattern contains references to business terms or
entities from an eMDM, then these elements must also be present at the same level of
abstraction as the pattern. However, if the referenced eMDM elements are associated
with a more specific level than the pattern then the pattern must be moved to the same
level in the catalog as those referenced eMDM elements. Thus, the employed business
vocabulary, i.e., the referenced eMDM elements, determines the level of abstraction of a
pattern. Furthermore, the business vocabulary used in the local cubes must also be taken
into account when assigning a pattern to an abstraction level.

Example 7.1 (Levels of Abstraction). Figure 7.1 illustrates the organization of domain-
independent, domain-specific, and organization-specific patterns, business terms, cubes,
and dimensions. The level-specific subset-subset comparison, the year-specific subset-subset
comparison, and the subset-complement comparison pattern are assigned to the domain-
independent level of abstraction, since they do not contain references to domain-specific
or organization-specific eMDM elements. It should be noted that the year-specific subset-
subset comparison is obtained through partial instantiation of the level-specific subset-subset
comparison. In addition, the domain-independent dimension Time and the unary dimension
predicate 2019 are also assigned to the domain-independent level. The domain-specific
level of abstraction contains the patterns breed-specific subset-subset comparison and farm-
specific subset-subset comparison. The former can obtained through partial instantiation of
the level-specific subset-subset comparison pattern by binding the level name Main Breed to
one of the parameters, the latter can be obtained through partial instantiation by binding
the level name Farm to one of the parameters. Finally, the organization-specific level of
abstraction contains the subset-subset comparison of facts from Happy Milk’s first farm site,
which is obtained through partial instantiation of the domain-specific farm-specific subset-
subset comparison pattern by binding the unary dimension predicate name Farm Site 1 to
one of the parameters. ♢

The organization principle for patterns also applies to business terms, with the exception
that only referenced entities of an eMDM can be considered as the business vocabulary used.
Nevertheless, future work may propose different organization principles. Likewise, there
may be different definitions of what qualifies as “domain-specific”, and the classification of
a pattern as domain-specific may be subjective. For example, one may argue that a Sales

cube is domain-independent since products and services are sold in multiple domains, while

CHAPTER 7. PATTERN ORGANIZATION 74

..
.
..
.

..
.
..
.

..
.M
il
k
in

g

..
.M
il
k
in

g

Domain-Independent
Abstraction Level

Domain-Specific
Abstraction Level

Organization-Specific
Abstraction Level

..
.
..
.

..
.
..
.

..
.
..
.

..
.
..
.

Y
ea

r-
S
p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
o
n

L
ev

el
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
om

p
ar

is
on

S
u
b
se

t-
C
om

p
le

m
en

t
C
o
m

p
ar

is
on

B
re

ed
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
om

p
ar

is
on

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
o
n
 o

f
F
ar

m
 S

it
e

1

H
ol

st
ei

n

F
ar

m
 S

it
e

1

In
st

a
n
ti
a
ti
o
n
O

f

..
.
..
.

..
.
..
.

20
19

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

A
n
im

a
l

..
.

..
.

..
.

..
.

A
n
im

a
l ..
.

..
.

..
.

..
.F
a
rm

11

11

11

F
ar

m
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
o
n

Figure 7.1: Exemplified organization of OLAP patterns and elements of an eMDM along
levels of abstraction. Patterns from the same or a more specific abstraction level are
obtained through (partial) instantiation.

CHAPTER 7. PATTERN ORGANIZATION 75

another would argue that a sales cube is domain-specific for the retail sector.

7.2 Domain-Independent Patterns

Domain-independent patterns do not refer to any particular, domain-specific eMDM
elements. Hence, domain-independent patterns contain only typed variables and constraints
without domain-specific name constants. Thus, either no eMDM elements at all or only
fragments of domain-independent eMDMs are referenced by a domain-independent pattern.
For example, the comparison of two groups of facts derived from one cube represents a
domain-independent pattern without any references to domain-specific cubes or dimensions.
Likewise, the comparison of a measure value for one period with the measure value for the
same period in the previous year can be considered a domain-independent pattern, which
refers to a domain-independent time dimension.

OLAP patterns that are domain-independent describe abstract solutions to specific types of
information needs without referencing domain knowledge and are therefore applicable to a
wide range of domain-specific and organization-specific information needs. The descriptions
and templates of domain-independent patterns remain generic, which allows them to be
understood in various contexts, at the cost of reduced expressiveness and complexity of the
supported queries.

1 CREATE DIMENSION "Time" WITH

2 LEVEL PROPERTIES

3 "Date":"Date";

4 "Month":"Month No";

5 "Year":"Year No";

6 END LEVEL PROPERTIES;

7

8 ATTRIBUTE PROPERTIES

9 "Month Label":"Month Name";

10 END ATTRIBUTE PROPERTIES;

11

12 CONSTRAINTS

13 "Date" ROLLS_UP_TO "Month";

14 "Month" ROLLS_UP_TO "Year";

15 "Month" DESCRIBED_BY "Month Label";

16 END CONSTRAINTS;

17 END DIMENSION;

Listing 7.1: Definition of domain-independent dimension Time

The identification and definition of domain-independent patterns is challenging since the

CHAPTER 7. PATTERN ORGANIZATION 76

discovery and description of solutions that are independent of a domain usually requires cross-
domain experience and knowledge. As pointed out by Fowler [11, p. 7], the identification
of domain-independent patterns is especially challenging since one cannot be certain of
its validity beyond its original domain. Nevertheless, we were able to identify several
domain-independent patterns (see Appendix B) by drawing from experience from previous
projects [5], [6] carried out in different domains.

Example 7.2 (Domain-Independent Pattern). The domain-independent level of abstrac-
tion depicted in Figure 7.1 contains the level-specific subset-subset comparison pattern
(Figure 7.2—Context), which allows to compare two aggregated measure values of two
groups of facts from a single source cube, where both groups relate to a common specific
level. The level can be specified by the parameter ⟨baseLevel⟩ allowing to restrict possible
dimensions bound to ⟨baseDim⟩ to those that provide a level with the bound name. The
⟨baseLevel⟩ can in turn be restricted by a unary dimension predicate specified for the
parameter ⟨baseDimSlice⟩. The domain-independent character of the level-specific subset-
subset comparison pattern allows its application to satisfy a wide range of possible specific
information needs (Figure 7.2 and Figure 7.3), but it may be difficult for pattern users
to understand the pattern since its description remains generic (Figure 7.2—Problem and
Solution). The pattern can also be used to derive specializations through partial instanti-
ation. The year-specific subset-subset comparison, for example, is obtained through partial
instantiation of the level-specific subset-subset comparison by binding the level name Year to
the parameter ⟨baseLevel⟩ and Year No to the parameter ⟨baseLevelDom⟩ (Listing 7.3). The
level Year is, for example, provided by the domain-independent dimension Time (Listing 7.1,
Line 5), which in turn can be restricted to the year 2019 by the domain-independent unary
dimension predicate 2019 (Listing 7.2). ♢

CHAPTER 7. PATTERN ORGANIZATION 77

1 CREATE UNARY_DIMENSION_PREDICATE "2019" APPLIES TO <ctx >: DIMENSION WITH

2 CONSTRAINTS

3 <ctx > HAS LEVEL "Year";

4 <ctx >."Year":"Year No";

5 END CONSTRAINTS;

6 END UNARY_DIMENSION_PREDICATE;

7

8 CREATE TERM DESCRIPTION FOR "2019" WITH

9 LANGUAGE = "English";

10 ALIAS = "Year 2019";

11 DESCRIPTION = "Restriction to year 2019.";

12 END TERM DESCRIPTION;

13

14 CREATE TERM TEMPLATE FOR "2019" WITH

15 LANGUAGE = "SQL";

16 DIALECT = "ORACLEv11";

17 EXPRESSION = "<ctx >=2019";

18 END TERM TEMPLATE;

Listing 7.2: Definition of domain-independent unary dimension predicate 2019

CHAPTER 7. PATTERN ORGANIZATION 78

Figure 7.2: Aliases, problem, solution, and context of the level-specific subset-subset
comparison pattern

Level-Specific Subset-Subset Comparison

Also Known As

Level-Specific Group-Group Comparison

Problem

Retrieve aggregated measure values for two specified groups of facts relating to a specific
level from a single source cube, which should be compared by calculating a comparative
measure.

Solution

From the ⟨sourceCube⟩, select the set of relevant facts using the unary
cube predicate ⟨baseCubeSlice⟩ and the unary dimension predicate ⟨baseDimSlice⟩
– the result serves as the base cube for further analysis. ⟨baseDimSlice⟩
selects over the dimension referenced by the ⟨baseDimRole⟩ that provides the
level referenced by ⟨baseLevel⟩ with a domain referenced by ⟨baseLevelDom⟩.

Interest
Cube

Comparison
Cube

σ

σ
Query
Result

σ

Base
Cube

<sourceCube>

From that base cube, select interest cube and com-
parison cube using conditions over the dimension
role ⟨compDimRole⟩ according to the unary dimension
predicates ⟨iDimSlice⟩ and ⟨cDimSlice⟩, respectively.
Perform a roll-up for interest cube and comparison
cube according to the ⟨groupCond⟩ dimension group-
ing over the ⟨joinDim⟩ dimension referenced by the
dimension role ⟨joinDimRole⟩ and compute a unary
calculated measure ⟨cubeMeasure⟩. To obtain the query result cube, join the interest cube
and comparison cube over the ⟨groupCond⟩ dimension grouping and compute a binary
calculated measure ⟨compMeasure⟩.

Context

<ctx>

<sourceCube>

<ctx>

<compDim>

<compDimRole><compDimRole>

 <joinDim>

<joinDimRole>

 <compDim>

 <baseCubeSlice>

<iDimSlice> <cDimSlice>

<baseDimSlice>

<ctx>

 <cubeMeasure>

<ctx>

<groupCond>

1

1

1 1 1

1

<ctx> <ctx>

<ctx>[2]<ctx>[1]

 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

<dimRole>

<baseDim>

 <baseLevel>:
<baseLevelDom>

CHAPTER 7. PATTERN ORGANIZATION 79

Figure 7.3: A template and related patterns for level-specific subset-subset comparison
(continued from Figure 7.2)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc
4 JOIN <baseDim > bd ON
5 sc.<baseDimRole > = bd.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, bd)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc
13 JOIN <compDim > cd ON
14 bc.<compDimRole >=cd.$dimKey(<compDim >)
15 JOIN <joinDim > jd ON
16 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 comparisonCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc
24 JOIN <compDim > cd ON
25 bc.<compDimRole >=cd.$dimKey(<compDim >)
26 JOIN <joinDim > jd ON
27 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
28 WHERE $expr(<cDimSlice >, cd)
29 GROUP BY $expr(<groupCond >, jd)
30),
31 SELECT $expr(<groupCond >, ic),
32 ic.<cubeMeasure > AS "Group of Interest",
33 cc.<cubeMeasure > AS "Group of Comparison",
34 $expr(<compMeasure >, ic, cc) AS <compMeasure >
35 FROM interestCube ic
36 JOIN comparisonCube cc ON
37 $expr(<groupCond >, ic) = $expr(<groupCond >, cc)

Related Patterns

Breed-Specific Subset-Subset Comparison

CHAPTER 7. PATTERN ORGANIZATION 80

1 INSTANTIATE PATTERN "Level -Specific Subset -Subset Comparison" AS

2 "Year -Specific Subset -Subset Comparison" WITH

3 <baseLevel > = "Year",

4 <baseLevelDom > = "Year No";

Listing 7.3: Obtaining domain-independent year-specific subset-subset comparison
through partial instantiation of level-specific subset-subset comparison

The organization of patterns in the domain-independent level of abstraction can facilitate
the discovery of general solutions for general types of information needs. First, there are
few domain-independent patterns compared to domain-specific and organisation-specific
patterns. The limited number of patterns at the domain-independent level enables pattern
users to identify appropriate solutions more quickly. Second, pattern users can be confident
that the patterns at this level are formulated in such a way that they can understand those
patterns regardless of their domain background. Thus, pattern users regardless of their
domain-specific and organization-specific knowledge should be able to understand general
solutions and apply the patterns to a specific domain or organization. For this purpose, it
is only required to take into account the business vocabulary during instantiation, which
is particularly advantageous for pattern authors who have to work as experts in different
domains.

7.3 Domain-Specific Patterns

Domain-specific patterns contain descriptions and templates that use domain-specific
business vocabulary, i.e., in contrast to domain-independent patterns, domain-specific
patterns are typically defined over an associated domain-specific reference eMDM [6]. A
reference eMDM includes domain-specific multidimensional model elements and a vocabulary
of business terms. For example, a pattern specific to the manufacturing sector may
refer to manufacturing-related calculated measures, cubes, dimensions, and predicates.
Standard catalogs of key performance indicators for different domains, e.g., engineering [85],
construction [86], or hospitality [87], may form the basis for such domain-specific vocabularies
of business terms. Constraints and derivation rules set the boundaries for sensible applications
of domain-specific patterns in the context of a particular data warehouse.

The domain-specific descriptions and templates, render such patterns more understandable
and usable for pattern users, with higher expressiveness and complexity of the supported
queries. Pattern users from other domains with similar information needs, however, may
struggle to understand and use domain-specific patterns, which potentially hinders knowledge
transfer across domains. Potential pattern users are often not well acquainted with business

CHAPTER 7. PATTERN ORGANIZATION 81

vocabulary specific to an unfamiliar domain and, consequently, users will not or only partially
understand the meaning and purpose of a pattern from an unfamiliar domain.

In contrast to domain-independent patterns, domain-specific patterns can be more easily
identified because pattern authors will usually have roots in a specific application domain
and, consequently, have an in-depth understanding of the types of information needs to
be satisfied in that domain. In addition, the abstraction to a domain-specific level of
abstraction requires less experience and knowledge as only a single domain has to be
considered. We have identified domain-specific patterns both by performing a bottom-up
abstraction of specific OLAP queries as well as by performing a top-down specialization
from domain-independent patterns (see Appendix C).

1 INSTANTIATE PATTERN "Level -Specific Subset -Subset Comparison" AS

2 "Breed -Specific Subset -Subset Comparison" WITH

3 <baseDimRole > = "Cattle",

4 <baseLevel > = "Main Breed",

5 <baseLevelDom > = "Breed Name";

Listing 7.4: Obtaining domain-specific breed-specific subset-subset comparison
through partial instantiation of level-specific subset-subset comparison

1 CREATE UNARY_DIMENSION_PREDICATE "Holstein" APPLIES TO <ctx > WITH

2 CONSTRAINTS

3 <ctx >."Main Breed":"Breed Name";

4 END CONSTRAINTS;

5 END UNARY_DIMENSION_PREDICATE;

6

7 CREATE TERM DESCRIPTION FOR "Holstein" WITH

8 LANGUAGE = "English";

9 ALIAS = "Cattle Breed Holstein";

10 DESCRIPTION = "Restriction of result to cattle of main breed

Holstein";

11 END TERM DESCRIPTION;

12

13 CREATE TERM TEMPLATE FOR "Holstein" WITH

14 LANGUAGE = "SQL" ;

15 DIALECT = "ORACLEv11" ;

16 EXPRESSION = "<ctx >.""Main Breed"" = ""Holstein""";

17 END TERM TEMPLATE;

Listing 7.5: Definition of domain-specific unary dimension predicate Holstein

CHAPTER 7. PATTERN ORGANIZATION 82

Example 7.3 (Domain-Specific Pattern). The domain-specifc level of abstraction depicted in
Figure 7.1 contains the breed-specific and the farm-specific subset-subset comparison pattern.
The breed-specific subset-subset comparison (Figure 2.5 and Figure 2.6) allows to compare
two aggregated measure values of two groups of facts from a single source cube where both
groups relate to a common level Main Breed. The breed-specific subset-subset comparison
pattern is obtained through partial instantiation of level-specific subset-subset comparison
(Listing 7.4) by binding Cattle to the parameter ⟨baseDimRole⟩, Main Breed to the parameter
⟨baseLevel⟩, and Breed Name to the parameter ⟨baseLevelDom⟩ (Figure 7.2–Context). The
level referenced by the bound parameter ⟨baseLevel⟩ restricts possible dimensions bound to
⟨baseDim⟩ to those that provide a level of that name with a corresponding domain defined
by ⟨baseLevelDom⟩. The referenced level Main Breed with the domain Breed Name can be,
for example, provided by the domain-independent dimension Animal (Listing 4.2, Line 5),
while the domain-independent unary dimension predicate Holstein can be used to restrict
the level Main Breed to cattle of breed Holstein (Listing 7.5). ♢

Organizing patterns at the domain-specific level of abstraction should promote discoverability
of solutions for domain-specific types of information needs, as pattern users can browse
for patterns that are relevant to their domain. However, pattern users may struggle with
applying solutions from a different domain to their own, meaning that the transfer of
knowledge between domains may be hindered.

7.4 Organization-Specific Patterns

Organization-specific patterns are defined with respect to the eMDM of a particular
organization data warehouse. Organization-specific patterns take into account the specific
business vocabulary from the company’s corporate language, which can deviate from domain
business vocabulary. For example, an organization-specific pattern for a manufacturing
company that produces brushes may refer to a multidimensional model that has been
extended and adapted from a reference eMDM for the manufacturing domain [6]. Patterns
based on the eMDM for that brush manufacturer are more understandable for in-house BI
users of the company’s various departments and subsidiaries since those patterns employ
common organization-specific business vocabulary.

Compared to domain-independent and domain-specific patterns, the specificity of the
descriptions as well as the significance and complexity of the supported queries increase
with organization-specific patterns. This is based on the fact that similar organisation-
specific information needs have to be abstracted only to a small extent in order to obtain

CHAPTER 7. PATTERN ORGANIZATION 83

corresponding organisation-specific patterns. As a result, less detail is lost, as patterns in
higher levels of abstraction have to be defined more generally.

Example 7.4 (Organization-Specific Pattern). The organization-specific level of abstraction
depicted in Figure 7.1 contains the subset-subset comparison of Farm Site 1 pattern. This
pattern allows to compare two aggregated measure values of two groups of facts from a single
source cube where both groups relate to a common level Farm Id that is being restricted
to by the unary dimension predicate Farm Site 1. The subset-subset comparison of Farm
Site 1 pattern is obtained through partial instantiation of the farm-specific subset-subset
comparison by binding Farm Site 1 to the parameter ⟨baseDimSlice⟩ (Listing 7.6), while
the farm-specific subset-subset comparison is obtained through partial instantiation of the
level-specific subset-subset comparison by binding Farm Id to the parameter ⟨baseLevel⟩ and
Farm Code to the parameter ⟨baseLevelDom⟩. The unary dimension predicate Farm Site 1

allows to restrict dimension properties named Farm Id with a Farm Code as its domain
(Listing 7.6, Line 3) to the Farm Site 1 by restricting the property to the farm id FC0001

(Listing 7.6, Line 16). ♢

1 INSTANTIATE PATTERN "Farm -Specific Subset -Subset Comparison" AS

2 "Subset -Subset Comparison of Farm Site 1" WITH

3 <baseDimSlice > = "Farm Site 1";

Listing 7.6: Obtaining organization-specific subset-subset comparison of Farm Site
1 through partial instantiation of farm-specific subset-subset comparison

CHAPTER 7. PATTERN ORGANIZATION 84

1 CREATE UNARY_DIMENSION_PREDICATE "Farm Site 1"

APPLIES TO <ctx > WITH

2 CONSTRAINTS

3 <ctx >."Farm Id":"Farm Code";

4 END CONSTRAINTS;

5 END UNARY_DIMENSION_PREDICATE;

6

7 CREATE TERM DESCRIPTION FOR "Farm Site 1" WITH

8 LANGUAGE = "English";

9 ALIAS = "First Farm Site";

10 DESCRIPTION = "Restriction of dimension to

Happy Milk 's first farm site";

11 END TERM DESCRIPTION;

12

13 CREATE TERM TEMPLATE FOR "Farm Site 1" WITH

14 LANGUAGE = "SQL";

15 DIALECT = "ORACLEv11";

16 EXPRESSION = "<ctx >.""Farm Id"" = ""FC0001""";

17 END TERM TEMPLATE;

Listing 7.7: Definition of organization-specific unary
dimension predicate Farm Site 1

Organization-specific patterns should be particularly beneficial for in-house pattern users.
The discovery of solutions for organization-specific types of information needs is fostered as
the patterns are easy to understand because organization-specific business vocabulary is
used. However, similar to domain-specific patterns, knowledge transfer across domains and
even across organization may be limited.

7.5 Pattern Catalogs

Levels of abstraction were discussed with regard to the classification of patterns and eMDM
elements, taking into account the employed business vocabulary. Orthogonal to such a
classification, patterns and eMDM elements can be grouped by organization elements that
take into account their intended use. To this end, we present catalogs for grouping patterns
according to their intended use. In addition, vocabularies and multidimensional models are
used analogously to group business terms and entities, respectively. It should be noted that
an eMDM is represented by a multidimensional model and a vocabulary.

Catalogs can be created at different levels of abstraction to group the patterns of one level.
If patterns are grouped in a catalog, it must be ensured that the necessary business terms
and entities are also provided, which are referenced by the grouped patterns via constants.

CHAPTER 7. PATTERN ORGANIZATION 85

Therefore, the business terms and entities referenced by the grouped patterns must be
provided by the eMDM, i.e., the vocabulary and the multidimensional model, of the level of
abstraction.

The available patterns that can be grouped within an abstraction level depends on the
abstraction level. Patterns in a higher level of abstraction are available to lower levels of
abstraction. That is, patterns associated with one level of abstraction can also be associated
with a lower level of abstraction at the same time. However, the reverse is not true, i.e.
patterns of a lower abstraction level are not available in higher abstraction levels. To group
a pattern from a higher level of abstraction in a catalog of a lower level, the pattern from the
higher level of abstraction is either directly reused or adapted through (partial) instantiation.
Whenever a pattern from a higher level of abstraction is either directly reused or adapted
through instantiation, the eMDM of the more specific level of abstraction must provide all
eMDM elements of the more abstract eMDM that are required for the reuse of the higher
level pattern. Similarly, vocabularies and multidimensional models can group business terms
and entities from the same level and from higher levels of abstraction through reuse.

Domain-independent patterns are comparable to software design patterns, which are also
domain-independent. Similar to software design patterns, which are grouped into creational,
structural, and behavioural software design patterns, domain-independent OLAP patterns
can be grouped by considering different aspects [13]. For example, domain-independent pat-
terns can be grouped according to whether only one (homogeneous) or two (heterogeneous)
source cubes are considered, whether a comparison of groups is performed, and whether
the pattern takes into account domain-independent entities and business terms such as
location, time, customer, and product dimensions with corresponding business terms.

Example 7.5 (Domain-Independent Catalog). Figure 7.4 illustrates the Homogeneous

Comparison Catalog, which groups the level-specific subset-subset, the year-specific subset-
subset, and the subset-complement comparison pattern, as each of them represents a
domain-independent comparison of two groups from a source cube. Additionally, the
domain-independent vocabulary Temporal Vocabulary groups the unary dimension predicate
2019, while the multidimensional model Temporal MDM groups the dimension Time. ♢

Catalogs of domain-specific patterns are defined to group patterns defined for a specific
reference eMDM. These domain-specific patterns can either be defined from scratch or
obtained through partial instantiation of domain-independent patterns in the context of
a particular domain. Elements matching the names thus bound must be provided by the
corresponding domain-specific reference eMDMs, if the instantiated patterns require them.

CHAPTER 7. PATTERN ORGANIZATION 86

Example 7.6 (Domain-Specific Catalog). Figure 7.4 illustrates the agriProKnow Catalog,
which groups the breed-specific subset-subset comparison and the farm-specific subset-
subset comparison. Both the breed-specific and the farm-specific subset-subset comparison
patterns can be obtained by partially instantiating the level-specific subset-subset comparison
with respect to the agriProKnow reference eMDM (see Example 7.3 and Example 7.4). The
agriproKnow reference eMDM is in turn represented by the domain-specific agriProKnow MDM

and the agriProKnow Vocabulary, respectively. ♢

Within an organization, catalogs can be created by considering the organization’s eMDM
or only fragments of it. The organization’s eMDM is usually realized by a data warehouse,
while fragments of an organization’s eMDM are realized by corresponding data marts. The
former is considered by a catalog when patterns for the entire organization are to be grouped,
while the latter are considered by a catalog when patterns for specific organizational units,
e.g., subsidiaries and departments, are to be grouped. An organization’s eMDM can be
based on an existing reference eMDM by reusing corresponding eMDM elements. Again,
the organization-specific eMDM must provide all eMDM elements required by patterns that
are reused or partially instantiated from a higher level of abstraction.

Example 7.7 (Organization-Specific Catalog). The Happy Milk Catalog in Figure 7.4 groups
patterns that are to be applied to Happy Milk’s eMDM. Happy Milk’s eMDM is represented
by Happy Milk MDM and Happy Milk Vocabulary and is based on agriProKnow’s reference
eMDM, i.e., eMDM elements of agriProKnow’s reference eMDM have been reused. It should
be noted that the organization-specific eMDM contains additional organization-specific
business terms and entities such as the unary dimension predicate Farm Site 1. ♢

The organization elements, i.e., pattern catalogs, business term vocabularies, and multidi-
mensional models, enable the grouping of patterns and eMDM elements within a level of
abstraction. Patterns and eMDM elements from higher abstraction levels can thereby be
grouped into lower levels by simply reusing them or adapting them to the current abstraction
level through partial instantiation. It is important that the eMDM associated with a pattern
or business term provides all the necessary eMDM elements referenced by the pattern and
business term, respectively.

CHAPTER 7. PATTERN ORGANIZATION 87

Happy Milk Catalog

Happy Milk MDM

Happy Milk Vocabulary

..
.M
il
k
in

g

..
.M
il
k
in

g

e
M

D
M
’s
 V

o
ca

b
u
la

ry
 o

f
B
u
si
n
e
ss

 T
e
rm

s
C
a
ta

lo
g
 o

f
P
a
tt

e
rn

s
e
M

D
M
’s

M
u
lt
id

im
e
n
si
o
n
a
l
M

o
d
e
l

Domain-Independent
Abstraction Level

Domain-Specific
Abstraction Level

Organization-Specific
Abstraction Level

Y
ea

r-
S
p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
om

p
ar

is
on

L
ev

el
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
o
n

S
u
b
se

t-
C
o
m

p
le

m
en

t
C
om

p
ar

is
o
n

B
re

ed
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
o
n

D
ai

ry
-
an

d
 B

re
ed

-
S
p
ec

if
ic

 S
u
b
se

t-
S
u
b
se

t
C
om

p
ar

is
on

S
u
b
se

t-
S
u
b
se

t
C
om

p
ar

is
on

 o
f

F
ar

m
 S

it
e

1

H
ol

st
ei

n

..
.

..
...

.

In
st

a
n
ti
a
ti
o
n
O

f
R
e
u
se

O
f

20
19

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

A
n
im

a
l

..
.

..
.

..
.

..
.

A
n
im

a
l

..
.

..
.

..
.

..
.

A
n
im

a
l

..
.

..
.

..
.

..
.

A
n
im

a
l

S
u
b
se

t-
C
om

p
le

m
en

t
C
o
m

p
ar

is
on

F
ar

m
-S

p
ec

if
ic

S
u
b
se

t-
S
u
b
se

t
C
o
m

p
ar

is
on

..
.M
il
k
in

g

..
.M
il
k
in

g

..
.

..
.

..
.

..
.

T
im

e

..
.

..
.

..
.

..
.

T
im

e

Temporal MDM agriProKnow MDM

agriProKnow VocabularyTemporal Vocabulary

Homogeneous
Comparison Catalog

agriProKnow Catalog

..
.
..
.

..
.
..
.

..
.
..
.

..
.
..
.

F
ar

m
 S

it
e

1

..
.
..
.

..
.
..
.

20
19

..
.

..
.

..
.

..
.F
a
rm

11

11

..
.

..
.

..
.

..
.F
a
rm

..
.
..
.

..
.
..
.

11
..
.
..
.

..
.
..
.

1
..
.
..
.

..
.
..
.

11
..
.
..
.

..
.
..
.

1

H
ol

st
ei

n
20

19..
.
..
.

..
.
..
.

11
..
.
..
.

..
.
..
.

1
..
.
..
.

..
.
..
.

11
..
.
..
.

..
.
..
.

1

Figure 7.4: Exemplified organization of OLAP patterns and elements of an eMDM into
catalogs, vocabularies, and multidimensional models along levels of abstraction.

Chapter 8
Proof-of-Concept Prototype

In this chapter we present a proof-of-concept prototype implementation of the pattern-based
approach to multidimensional data analysis that is based on the definitions and grammar for
OLAP patterns defined in the previous chapters, following an architecture that we introduce
in this chapter. The prototype implementation supports management and execution of
OLAP patterns by providing an application for managing the repository and an editor, which
have been implemented as part of a master’s thesis [88] based on the architecture described
here. The prototype presented in this chapter is a new implementation of the pattern-based
approach, independent of the prototype developed in the agriProKnow project [1], [2], which
was tailored to the needs of that project. In contrast to the prototype developed by Simon
Schausberger for the agriProKnow project [89], the proof-of-concept prototype described
here implements the concepts necessary to represent enriched multidimensional models and
OLAP patterns as introduced in Chapters 4 and 5. In addition, the new prototype supports
the operations necessary for using patterns as introduced in Chapter 6. A simple editor
facilitates interaction between user and repository by allowing to submit statements to the
repository and displaying result messages. We discuss the overall prototype architecture
in Section 8.1 and describe the functionality provided by the prototype in Section 8.2. In
Section 8.3, we describe the prototype’s components. Finally, in Section 8.4, we demonstrate
how the running example is supported by the prototype.

8.1 Architecture

The implementation architecture of the OLAP pattern prototype is composed of the following
three main components: editor, repository, and the database (Figure 8.1). Although the
data warehouse system is not directly part of the implementation, it is referenced in the
overall architecture since a pattern author describes the logical realization of a pattern
using a multidimensional model of a data warehouse enriched with business terms.

88

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 89

relationship

Language
Processor

Controller
Template
Processor

Data
Storage

Validation

component

Data
Warehouse

System

subcomponent

Repository

Editor

Database

Figure 8.1: System architecture, showing the relationships between the major components
and its subcomponents.

The core component is the repository, which includes the following subcomponents: language
processor, controller, data storage, template processor, and validation. The language
processor allows to process statements formulated by pattern authors and users and to
transform those statements into an object representation. The controller takes over
the object representation and decides on further steps to realize the actions defined by
the statement, while the data storage component accesses the database to store and
retrieve necessary object representations. The template processor allows for resolving
macro calls in pattern templates and their substitution with corresponding business term
expressions. Finally, the validation component, first, grounds derived elements by evaluating
the corresponding derivation rules and, second, checks whether a ground pattern that is to
be executed is actually applicable, taking into account the associated eMDM represented
by the specified multidimensional model and vocabulary.

It should be noted that the editor was implemented along with core components of the
repository as part of a master’s thesis [88] according to the specifications here and in the

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 90

previous chapters. The master’s thesis thus describes the implementation of all components
except for the validation component, which was completed separately and is described here.

8.2 Functionality

The core components presented in Section 8.1 reflect the basic structure of the prototype
without describing the functionalities relevant for a BI user. In this section we describe the
functionality provided by the prototype from the perspective of both a pattern author and a
user, i.e., we address the functionality provided by the prototype for the application of the
pattern-based approach to multidimensional data analysis, which includes the definition of
eMDM elements and the definition of patterns (see Chapters 4 and 5) but also the usage
of patterns (see Chapter 6). Furthermore, we describe the functionality that the prototype
offers to organize eMDM elements and patterns (see Chapter 7).

In order to clearly describe the functionality, we distinguish between content and organization
elements:

• Content elements represent cubes and dimensions, different types of business terms,
and OLAP patterns; descriptions and templates of patterns and business terms are
also considered as content elements.

• In contrast, organization elements represent multidimensional models, vocabularies,
and catalogs that allow for the arrangement of content elements into hierarchical
structures. Additionally, repository elements allow to group multidimensional models,
vocabularies, and catalogs.

It should be noted that an enriched multidimensional model is thus represented by a
multidimensional model and a vocabulary.

The functionality provided by the prototype is represented by the language statements that
can be processed. For this purpose, the supported language statements are described with
respect to the organization and content elements to be managed and used. It should be
noted that the language statements that can be processed by the prototype differ from
those already presented in the previous chapters as follows.

• Element identification via full path: Content and organization elements in the
repository application are identified not just by their name but by the combination
of the path to the parent element and their name. For example, a pattern can be
identified if its full path is specified, consisting of the name of the pattern’s repository,
the name of the catalog, and the name of the pattern itself, separated by slashes.

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 91

• Omission of implicit context parameters: Furthermore, for business terms, the context
parameters are not specified as they are implicitly defined by the specified type of the
business term.

• Marking query language text: Expression and query texts are enclosed within the
delimiters *{ and }* to facilitate the identification of query specific strings during
macro preprocessing via an island grammar [90, p. 109], while macro calls are
embedded between these query texts.

• Vocabulary keyword: Additionally, the prototype supports the keyword GLOSSARY

instead of the keyword VOCABULARY, as the latter represents a reserved keyword in
the used ANTLR4 implementation.

• Omission of explicit grounding: The GROUNDING statement is omitted since grounding
is implemented as part of the EXECUTE statement.

The functionality for managing organization elements and content elements is provided by
CREATE and DELETE statements as follows.

• CREATE statements provide the functionality to define content elements and organiza-
tion elements. A pattern author specifies the name and type of the element that is
to be created. In addition, for multidimensional models, vocabularies, and catalogs,
the pattern author also specifies the repository, i.e., the path, to which the element is
added. For a cube, a pattern author specifies name, measures, and dimension roles,
whereas for a dimension, a pattern author specifies the name, levels, and attributes
with roll-up and described-by relationships between them. Regardless of whether
a cube or a dimension is created, the pattern author specifies the path and name
of the multidimensional model which the newly created element should be added
to. For a business term, a pattern author specifies the name, type, constraints for
expected types of elements, their properties, and their properties’ domains, and the
vocabulary which the business term will be added to. In addition, for calculated
measures, the return type is also specified. Business terms can be further described
by adding metadata: textual description of the business terms, information about
the (natural) language of the textual description, and alias names of the business
term. Templates of a business term contain the expression, with further metadata
specifying the (formal) language and dialect in which the expression is formulated.
Finally, for a pattern, the pattern author specifies name, parameters, local cubes,
derived elements, constraints, and the path to the catalog which the pattern will
be added to. Similarly to business terms, a pattern author specifies at least one

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 92

template for a pattern, which defines the expression along with (formal) language
and dialect which the expression is formulated in, the data model and realization
variant to be considered, and a description defining its aliases, the problem to be
solved, the solution to be followed, an exemplified application, and related patterns.

• DELETE statements provide the functionality to remove organization and content ele-
ments. For this purpose, a pattern author specifies the path and name of the element
to be deleted. The delete functionality is cascading, i.e., deleting an organization
element deletes all subordinate organization elements and content elements, while de-
leting a pattern and business term deletes all subordinated descriptions and templates.
Since templates and descriptions of patterns and business terms are unnamed they
cannot be deleted by specifying path and name. To delete a particular description, a
pattern author defines the path to and the name of the pattern or business term that
the description belongs to as well as the language of the description to be deleted;
each description in that language is then deleted. Templates are deleted in a similar
way, except that all templates for the pattern or business term that correspond to the
defined language, dialect, data model, and realization variant are deleted.

The functionality for using patterns is provided by INSTANTIATE and EXECUTE statements.
The execution function incorporates the grounding of the parameter-free pattern being
executed; a separate GROUNDING statement is not required.

• INSTANTIATE statements allow pattern authors and users to bind names of eMDM
elements to unbound parameters of a pattern. The pattern to be instantiated
is specified by its path and name, while the specialized pattern obtained by the
instantiation is specified by a new name and by stating the catalog to which the
specialized pattern is added. By specifying paths during instantiation, it is possible
to instantiate a pattern from a higher level of abstraction in a catalog (from another
repository), while the resulting pattern can be added to a more specific catalog.

• EXECUTE statements provide the functionality to execute a specific pattern to obtain
at least one executable OLAP query. For this purpose, a pattern user specifies the
path and name of the pattern to be executed as well as the paths and names of the
multidimensional model and the vocabulary to be considered. If no templates are
restricted, the execution returns an executable OLAP query for each available template
of the pattern. Alternatively, a pattern user can restrict the pattern templates to
be executed by specifying the language, dialect, data model, and realization variant
of the template. It should be noted that the execution functionality also includes a

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 93

check whether the ground pattern to be executed is also applicable to the specified
multidimensional model and vocabulary.

Finally, the functionality to browse organization elements and content elements is provided
by corresponding SEARCH and SHOW statements as follows.

• SEARCH statements provide functionality for finding organization elements and content
elements by specifying the element type, a search space, and a search term. The
element type specifies the type of elements to be found. The search space is
represented by a path to an organization element, but note that no search space is
specified to search for repositories. For organization elements, the names of existing
elements are searched for the search term. For content elements, in addition to the
name, the sections in the description (if available) can also be searched. It should be
noted that the search is not case sensitive.

• SHOW statements provide the functionality to inspect particular organization and
content elements by retrieving the definition of those elements, i.e., the corresponding
CREATE statement. For patterns and business terms, the SHOW statement also returns
the descriptions and the templates. To issue a SHOW statement, pattern authors and
users specify the path and name of the element to be inspected.

The prototype allows pattern authors to describe a data warehouse through a multidimen-
sional model, represent the existing business vocabulary, and to define patterns as shown
in Figure 2.3. The prototype also supports pattern users in instantiating patterns and
executing parameter-free patterns as shown in Figure 2.3. The prototype thus provides all
the functionality necessary to employ the pattern-based approach to multidimensional data
analysis in a specific context through appropriate language statements.

8.3 Components

The architecture and the implemented functionality are described in Sections 8.1 and
8.2. This section elaborates on the components that realize the functionality described
in the previous sections. We discuss the individual components in detail by examining
each component from both a functionality and a process perspective. The functionality
perspective describes the functions that are available to pattern authors and users. The
process perspective describes the steps necessary to implement the provided functionality.
For a more detailed logical, development, and physical perspective of the components we
refer to the master’s thesis of Moritz [88].

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 94

8.3.1 Repository

The repository application is the central component of the OLAP pattern prototype that
provides the functionality for processing language statements, which adhere to the OLAP
pattern grammar definition. Those language statements include CREATE statements for
defining an organizational structure, i.e., creating a repository element with its subordinate
multidimensional model, vocabulary, and catalog elements. The repository application
supports the creation of multiple repository elements, which allows pattern catalogs,
multidimensional models, and business term vocabularies to be managed at different levels
of abstraction.

The prototype supports the definition of CREATE statements for the definition of content
elements and their assignment to corresponding organizational elements, including the
definition of cubes, dimensions, multidimensional models, business terms, vocabularies,
OLAP patterns, catalogs. Likewise, CREATE statements can also be used for the creation
of descriptions and templates for patterns and business terms, the templates of which
contain query statements enclosed within *{ and }*, with macro calls embedded between
these query statements. The repository application persists all created content elements
and organization elements in a database. DELETE statements also allow for removing
organization elements and content elements, including DELETE statements that remove
descriptions in a particular (natural) language and statements that remove templates for
a particular data model, variant, language, and dialect from patterns and business term
elements.

SEARCH statements allow to find organization elements within repository elements and
content elements within the assigned organization element. Once a content element has
been found, it can be inspected using the SHOW statement, which allow to request the
definition of the element.

In addition to the definition of organization elements and content elements, the repository
application supports INSTANITATE and EXECUTE statements, i.e., the instantiation and
the subsequent execution of patterns while considering a specific multidimensional model
enriched by business terms of a certain vocabulary. To this end, the pattern to be executed
is first grounded, i.e., the derivation rules of derived elements are evaluated with respect to
the specified multidimensional model and vocabulary yielding a ground pattern. Second, the
prototype checks whether the ground pattern is applicable to the multidimensional model
enriched with the vocabulary, taking into account local cubes of the pattern, i.e., checking
whether all constraints can be satisfied. Only if the ground pattern is also applicable then
the specified templates are subsequently processed to obtain an executable OLAP query for
each processed template.

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 95

Statement Processing

The language processor expects the statement to be parsed as input and converts the
statement into an object representation which is passed to the controller. The language
processor consists of lexer, parser, and a semantic analyzer. The lexer represents the input
statement consisting of a sequence of characters as words (or tokens). The parser then
analyzes the structure of the input statement, taking into account the language grammar
and the tokens, to obtain a tree representation: the abstract syntax tree. The abstract
syntax tree is used by the semantic analyzer to ensure that logical conditions are met. For
example, only previously defined variables can be used in derivation rules, thus preventing
the definition of cyclic derivation rules. As a last step, the language processor transforms
the checked abstract syntax tree into an object representation. This object representation
also includes the operation to be performed with its arguments. In the case of CREATE

statements, the object representation additionally contains the representation of the content
element or the organization element to be created.

The controller implements the business logic to orchestrate the necessary steps that must
be performed to process the recognized language statements. For each CREATE statement
that refers to an organization element, the controller retrieves the corresponding parent
organization element (if available), checks whether an organization element with the
specified name already exists within the previously retrieved parent organization element,
and creates the specified element if no such element already exists. Similarly, for each
CREATE statement concerning a cube, dimension, business term, or pattern the controller
retrieves the parent organization element and creates a corresponding element, replacing an
existing element of the same name if such an element exists under the parent organization
element. For each CREATE statement concerning a template or a description the controller
requests the parent content element, i.e., pattern or business term specified by the path
and name, checks whether a description with the specified language or a template for the
data model and variant formulated in a specific language and dialect already exist before
creating the template or description, assigning the created element or replacing an existing
element. The controller processes DELETE statements by retrieving the parent organization
element, if available, and removing the organization or content element from that parent
element. For DELETE statements concerning templates and descriptions the pattern or
business term is retrieved and either one or more templates and descriptions corresponding
to the specified arguments are deleted. The controller further processes INSTANTIATE

statements by retrieving the pattern to be instantiated, assigning the parameter bindings to
each parameter occurring in the constraints, derivation rules, and local cubes, and finally
creating the new pattern. The templates of the pattern that is instantiated are taken over
and assigned to the new pattern, while the descriptions cannot be taken over as they no

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 96

longer correspond to the new pattern. Statements to execute parameter-free patterns are
delegated from the controller to the template processor; the result of the EXECUTE statement
is then returned. SHOW statements do not specify what type of element should be detailed,
as only a path and a name are provided as arguments. The controller breaks this path into
single names and retrieves for each name the corresponding element (in the context of its
parent element) using the data storage. It should be noted that a corresponding element
can be identified because the names of the organization and content elements within a
parent element are unique. Finally, SEARCH statements are relayed to the data storage, to
retrieve the matching elements.

The data storage subcomponent encapsulates the database functionality necessary to process
the language statements accordingly. The data storage provides functionality to manage
database sessions as well as to persist and delete content or organization elements. The
data storage subcomponent also supports the retrieval of content and organization elements
by name, taking into account organizational structures specified by a corresponding path.
Furthermore, data storage supports the search for organization and content elements with a
name containing a search term; for patterns and business terms their descriptions are also
searched. It should be noted that the data storage supports the mapping from the object
representation of elements to their representation in the database. In that case the mapping
into a relational database, the mapping being bidirectional, i.e., the elements persisted in a
relational representation can be mapped back to its object representation.

The template processor provides functionality to execute a pattern with respect to a multidi-
mensional model enriched with a business term vocabulary. Either all templates available are
executed or only those that match the specified data model, variant, language, and dialect.
The template processor delegates the grounding and the checking for applicability of the
parameter-free pattern to be executed to the validation subcomponent (see next section).
Once the pattern is successfully grounded and also applicable to the specified multidimen-
sional model and vocabulary, the template processor retrieves the pattern templates to be
executed, while taking into account the specified arguments. First, all variables used in
the templates are substituted by the names bound to the corresponding variables, resulting
in ground templates. Second, the template processor resolves the $dimKey and the $expr

macro calls by performing a language processing based on the grammar for macros. For
this purpose, the template process employs a macro-lexer, a macro-parser and a semantic
macro-analyzer, considering the macro island grammar. The macro-lexer represents a
grounded template as tokens while the macro-parser provides an abstract syntax tree based
on the recognized tokens and the macro island grammar. The semantic macro-analyzer
then uses the abstract syntax tree to identify and resolve the calls to the macros. Each
$dimKey macro call is resolved by retrieving the dimension using the name defined by the

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 97

argument and looking up the base level, the name of which is then used to substitute
the corresponding $dimKey macro call in the ground template. Each $expr macro call is
resolved by first retrieving the business term using the first argument of the macro call
as the term’s name. The second step is to retrieve the templates of the business term,
which correspond to the language and dialect arguments of the EXECUTE statements. For
unary business terms, the second argument from the $expr macro call is used to substitute
the context parameter <ctx> in the retrieved template(s), while for binary business terms,
the second argument is used to substitute the context parameter <ctx>[1] and the third
argument is used to substitute the context parameter <ctx>[2]. The grounded template
of the business term is then used to replace the corresponding $expr macro call in the
template of the ground pattern. Finally, the executable OLAP queries are returned after all
macro calls in the template of the ground pattern could be resolved.

Statement Validation

The repository application also offers statement validation, which provides the functionality
for grounding patterns and checking the ground patterns’ applicability to a multidimensional
model and a vocabulary. As the validation subcomponent is not covered by the master’s
thesis of Moritz [88], we discuss the validation functionality in more detail here.

The grounding process for a pattern starts with the verification that the pattern is parameter-
free. A pattern is parameter-free if there is no parameter without a bound name. Con-
sequently, the grounding fails if the pattern is not free of unbound parameters.

The second grounding step is to recursively calculate a dependency graph for each parameter-
free pattern. A dependency graph consists of multiple levels of derivation rules and describes
dependencies between derivation rules in adjacent levels. The dependency graph is needed
to evaluate potentially interdependent derivation rules of a parameter-free pattern. The
semantics of a dependency graph is as follows: A derivation rule from a higher level can
only be evaluated if the derivation rule from a lower level that the derivation rule from the
higher level depends on is evaluated first. Consequently, a derivation rule from a higher level
contains a derived element that must be bound to a name that is determined by evaluating
the depending derivation rule from the lower level.

The constructDependencyGraph function is called recursively to construct the dependency
graph of a parameter-free pattern. The constructDependencyGraph function is called
by passing an empty dependency graph, the level number zero (indicating the level to
be populated), and the derivation rules to be considered. The level (indicated by the
passed level number) is populated by iterating over the derivation rules as follows. For
each derivation rule, its first part is obtained, which is either a parameter, a constant, or a

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 98

derived element. It should be noted that the first part of each derivation rule defined by
the domain of a property represents an entity, while it represents a business term for each
derivation rule defined by the return type of a business term. If the first part is a parameter
or a constant, the derivation rule is added to level zero of the dependency graph. However,
if the first part of the derivation rule is a derived element, the constructDependencyGraph

function checks the dependencies of this derived element as it indicates an entity derived by
evaluating a derivation rule. The derivation rule that is currently being iterated is added to
the current level if the derivation rule of its derived element (that represents its entity) has
as its first part a derived element that is determined by a derivation rule of the lower level.
After all derivation rules have been iterated over, the constructDependencyGraph checks
whether all derivation rules are assigned to the dependency graph. If not all derivation
rules have been added to the dependency graph, the constructDependencyGraph function
is called again by passing the updated dependency graph, the incremented level number,
and the remaining derivation rules to be considered. Otherwise, if all derivation rules are
assigned, the recursion terminates by returning the constructed dependency graph.

The last step of grounding a parameter-free pattern is the bottom-up evaluation of the
derivation rules in the dependency graph. The evaluation starts at level zero of the
dependency graph by iterating each derivation rule. For each derivation rule, the validation
subcomponent checks whether the rule is defined via the domain of a property or the return
type of a business term. Derivation rules over domains are evaluated by first considering
the local cubes of the pattern. If a local cube matches the name of the rule’s entity, while
providing a property matching the name of the rule’s property, then the property’s domain
is retrieved and the domain’s name is bound as the value of the corresponding derived
element. The multidimensional model is considered next if no suitable domain is found in
the properties of a local cube in the following way: If an entity matches the name of the
rule’s entity, while providing a property matching the name of the rule’s property, then the
property’s domain is retrieved from the multidimensional model and the domain’s name is
bound as the value of the corresponding derived element. For each derivation rule defined
by a return type of a business term, a business term matching the defined name is retrieved
from the specified vocabulary. If the received business term provides a return type, the
return type’s name is assigned as the value of the corresponding derived element. Grounding
ends once all derivation rules have been evaluated.

For parameter-free patterns that are successfully grounded, the validation subcomponent
checks whether or not they are applicable to the specified multidimensional model and
vocabulary. The applicability check of a pattern starts with verifying that the pattern
is free of unbound parameters and derived elements. Thereafter, the constraints of the
pattern are verified as follows: A constraint representing a type constraint is satisfied if an

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 99

element with a name matching the element name of the constraint (first compartment)
and with a type matching the type name of the constraint (second compartment) can be
found among the cubes and properties of the local cubes of the pattern, the entities and
properties of the multidimensional model, or among the business terms in the vocabulary.
Similarly, a property constraint is satisfied if in the local cubes or in the multidimensional
model there is an entity with a name matching the entity name of the constraint (first
compartment), while providing a property named after property name of the constraint
(second compartment) with a type defined according to the type name of the constraint
(third compartment). A domain constraint is satisfied if an entity with a name matching
the entity name of the constraint (first compartment) is present in the local cubes of the
pattern or in the multidimensional model that provides a property matching the property
name of the constraint (second compartment) with a domain named according to the
domain name of the constraint (third compartment). A return constraint is satisfied if a
business term named after the term name of the constraint (first compartment) is present
in the vocabulary that also provides the required return type defined by the return type
name of the constraint (second compartment). A unary applicable-to constraint is satisfied
if a business term can be found that is named after the term name of the constraint (first
compartment); the validation subcomponent also checks whether the type of the retrieved
business term matches the arity of the constraint. In addition, the validation subcomponent
checks whether the application to the target entity is a valid business term application.
To this end, the validation component binds the name of the target entity name of the
unary applicable-to constraint (second compartment) to the context parameter <ctx> of
the retrieved business term and checks whether the constraints of the business term can
be satisfied by the local cubes of the pattern or the multidimensional model while taking
into account the binding of the context parameter <ctx>. The check whether or not the
type, property, and domain constraints of business terms are satisfied follows the same
logic as described for the evaluation of the corresponding pattern constraints. The unary
applicable-to constraint is satisfied if the binding leads to a valid business term application.
Similarily, the satisfaction of binary applicable-to constraints can be determined in the same
way, except that the second compartment of the binary applicable-to constraint is bound
to the context parameter <ctx>[1], while the third compartment is bound to the context
parameter <ctx>[2]. The ground pattern can be applied to the specified multidimensional
model and vocabulary if and only if all constraints can be satisfied.

Ultimately, all of the components of the repository application provide functionality that
is consumed by the corresponding editor application, which we describe in the following
section.

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 100

8.3.2 Editor

The editor application is a client for accessing the functionality provided by the repository
application. The editor provides a simple text interface through which a user can write
statements and send them to the repository application. The formulated statements must
adhere to the OLAP pattern grammar. It should be noted that the editor is a thin client,
with no business logic implemented on the client side.

Figure 8.2: Command line interface provided by the Editor application exemplified.

The output received by the repository application is displayed as a JSON response in the
result area below the input interface for the statements (see Figure 8.2). The result area also
displays errors, for example, if a statement contains a syntactical error the error message
from the parser is delegated to the user. In addition, pattern authors and users are informed

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 101

about the success or failure of CREATE, DELETE and INSTANTIATE statements. For EXECUTE
statements the obtained executable OLAP queries are returned. For SEARCH statements
the JSON representation of the elements found is returned, while for SHOW statements the
corresponding CREATE statement is returned. It should be noted that SHOW statements
concerning patterns and business terms also return the definitions of the corresponding
templates and descriptions.

8.4 Usage Scenario

We demonstrate the functionality of the prototype by providing exemplified statements
that need to be processed to support the Happy Milk scenario inspired by our experience
gained in the agriProKnow project (Section 2.2). In particular, we show example statements
necessary to apply the pattern-based approach to multidimensional data analysis in the
Happy Milk scenario. It should be noted that only the most important statements are
discussed; for the complete set of statement we refer to Appendix D.

1 CREATE REPOSITORY "Happy Milk";

2 CREATE CATALOGUE "Happy Milk"/"Happy Milk Catalog";

3 CREATE GLOSSARY "Happy Milk"/"Happy Milk Vocabulary";

4 CREATE MULTIDIMENSIONAL_MODEL "Happy Milk"/"Happy Milk MDM";

Listing 8.1: Definition of the Happy Milk company’s organization structure

When employing the pattern-based approach to data analysis in the Happy Milk company,
a pattern author, e.g., the data engineer of an external precision farming consulting
agency, starts by specifying the organization structure. First, the pattern author creates a
repository Happy Milk and then adds a catalog Happy Milk Catalog, a vocabulary Happy

Milk Vocabulary, and a multidimensional model Happy Milk MDM (Listing 8.1).

1 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Lactation" WITH

2 LEVEL PROPERTIES

3 "Day Of Lactation":"No Of Days";

4 END LEVEL PROPERTIES;

5 END DIMENSION;

Listing 8.2: Statement to define dimension Lactation for the multidimensional model
Happy Milk MDM.

Once the organization structure is defined, the pattern author continues to conceptually
model the company’s data warehouse (Figure 2.4) by describing the dimensions and cubes.

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 102

The thus defined entities are added to the multidimensional model Happy Milk MDM. The
exemplified statement in Listing 8.2 describes a dimension Lactation including a level
Day Of Lactation of type No Of Days that is added to the Happy Milk MDM.

1 SHOW "agriProKnow Repository"/"agriProKnow Reference MDM"/"Lactation";

Listing 8.3: Statement to inspect dimension Lactation in the agriProKnow reference
MDM

The statement in Listing 8.2 can be formulated from scratch by the pattern author or it
can be reused. Therefore, the corresponding dimension Lactation in the agriProKnow MDM

just needs to be inspected (Listing 8.3).

1 CREATE BINARY_CALCULATED_MEASURE "Happy Milk"/"Happy Milk

Vocabulary"/"Average Milk Yield Ratio" WITH

2 CONSTRAINTS

3 <ctx >[1] HAS MEASURE "Average Milk Yield";

4 <ctx >[1]."Average Milk Yield":"Liquid In Liter";

5 <ctx >[2] HAS MEASURE "Average Milk Yield";

6 <ctx >[2]."Average Milk Yield":"Liquid In Liter";

7 END CONSTRAINTS;

8

9 RETURNS "Rational Number";

10 END BINARY_CALCULATED_MEASURE;

11

12 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk

Vocabulary"/"Average Milk Yield Ratio" WITH

13 LANGUAGE = "English";

14 ALIAS = "Average Milk Production Ratio";

15 DESCRIPTION = "The ratio of the average milk yield production";

16 END TERM DESCRIPTION;

17

18 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk

Vocabulary"/"Average Milk Yield Ratio" WITH

19 LANGUAGE = "SQL";

20 DIALECT = "ORACLEv11";

21 EXPRESSION = "*{ <ctx >[1].""Average Milk

Yield"")/<ctx >[2].""Average Milk Yield"" }*";

22 END TERM TEMPLATE;

Listing 8.4: Definition of the binary cube predicate Average Milk Yield Ratio added
to the vocabulary Happy Milk Vocabulary

Following the definition of the MDM, the pattern author continues to define the available
business terms. The pattern author can, for example, define the business term Average Milk

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 103

Yield Ratio (Listing 8.4) from scratch or by reusing it from the corresponding reference
vocabulary for precision dairy farming agriProKnow Reference Vocabulary and add it to
Happy Milk Vocabulary.

The CREATE statement for the binary calculated measure Average Milk Yield Ratio omits
the explicit specification of the context variables <ctx>[1] and <ctx>[2]. The corres-
ponding CREATE statements concerning the description and template reference the business
term by specifying the path to the business term Happy Milk/Happy Milk Vocabulary and
its name Average Milk Yield Ratio. It should be noted that the pattern author defines the
expression of the business term by embedding query-language-specific text blocks into *{

and }*.

Once the eMDM is defined by the multidimensional model and vocabulary the pattern
author continues to define patterns. The pattern author defines the pattern Farm-Specific

Subset-Subset Comparison for the Happy Milk Catalog through instantiation of the Level-

Specific Subset-Subset Comparison pattern from the reference precision farming catalog
agriProKnow Catalog by binding the dimension role name Farm to parameter ⟨baseDimRole⟩,
the level name Far Id to parameter ⟨baseLevel⟩, and the domain name Farm Code to the
parameter ⟨baseLevelDom⟩ (Listing 8.5).

1 INSTANTIATE PATTERN "agriProKnow Repository"/"agriProKnow

Catalog"/"Level -Specific Subset -Subset Comparison" AS "Happy

Milk"/"Happy Milk Catalog"/"Farm -Specific Subset -Subset Comparison"

WITH

2 <baseDimRole > = "Farm",

3 <baseLevel > = "Far Id",

4 <baseLevelDom > = "Farm Code";

Listing 8.5: Definition of the Farm-Specific Subset-Subset Comparison pattern through
instantiation

After the instantiation, the pattern author notices that the obtained pattern is faulty
because there is no dimension providing a level with that name Far Id in Happy Milk MDM.
To correct this mistake the pattern author deletes (Listing 8.6) the pattern and repeats the
instantiation in Listing 8.5 with the correct level name Farm Id.

1 DELETE PATTERN "Happy Milk"/"Happy Milk Catalog"/"Farm -Specific

Subset -Subset Comparison";

Listing 8.6: Deletion of faulty Farm-Specific Subset-Subset Comparison pattern

CHAPTER 8. PROOF-OF-CONCEPT PROTOTYPE 104

As soon as the data warehouse has been conceptually modeled and enriched with business
terms, and as soon as all relevant patterns have been defined, the pattern author’s work is
complete.

1 INSTANTIATE PATTERN "Happy Milk"/"Happy Milk

Catalog"/"Farm -Specific Subset -Subset Comparison" AS

2 "Happy Milk"/"Happy Milk Catalog"/"Farm site 1 Jersey -Holstein

Milk Yield Comparison" WITH

3 <sourceCube > = "Milking",

4 <baseCubeSlice > = "Mid Lactation Phase",

5 <baseDimSlice > = "Farm Site 1",

6 <compDimRole > = "Cattle",

7 <iDimSlice > = "Jersey",

8 <cDimSlice > = "Holstein",

9 <joinDimRole > = "Farm",

10 <groupCond > = "Per Farm",

11 <cubeMeasure > = "Average Milk Yield",

12 <compMeasure > = "Average Milk Yield Ratio";

Listing 8.7: Instantiation of the farm-specific subset-subset comparison

Suppose that in the following weeks, the company detects a decrease in milk production
of the farm Farm Site 1. To investigate this decrease in milk production, a pattern user,
e.g., the farm manager in charge, would like to compare the breeds present on the farm
to see if the decrease is attributable to a particular breed. The pattern user may start the
investigation by calculating the ratio between the average milk yield of Jersey cattle and
the average milk yield of old Holstein cattle, considering only animals with in their mid
lactation phase from farm Farm Site 1. The pattern user recognises that this information
need corresponds, at a more abstract level, to a farm-specific subset-subset comparison. For
this reason, the pattern user instantiates the corresponding pattern according to Listing 8.7.

Chapter 9
Evaluation

In this chapter, we first discuss practical relevance and expressiveness of the proposed
pattern-based approach to multidimensional data analysis, citing experience from cooperative
research projects as evidence for the usefulness of the approach in Section 9.1. We then
evaluate the approach in Section 9.2 using a framework for assessing the quality of domain-
specific languages against the goals of a particular stakeholder.

9.1 Relevance and Expressiveness

Practical relevance of the pattern-based approach to multidimensional data analysis is
demonstrated by its application in the agriProKnow cooperative research project for building
a data warehouse for decision support in precision dairy farming [4]. In the agriProKnow
project, OLAP patterns were originally introduced to be able to deal with uncertainties
regarding the stakeholders’ requirements with respect to OLAP queries to be answered by
the data warehouse. During requirements elicitation, when it came to identifying interesting
business questions we faced stakeholders who were vague regarding the required queries
that would have to be composed eventually, partly due to uncertainties concerning the data
warehouse’s still evolving multidimensional model. The multidimensional model ultimately
comprised ten cubes and sixteen dimensions and was enriched by 108 predicates, groupings
and orderings as well as 89 calculated measures. Instead of deferring the composition of a
vast amount of queries towards the end of the project, which had a rather strict deadline set
by the funding agency, requirements from experience in previous research projects, e.g., the
Semantic Cockpit project [5] and research that led to the development of the BIRD reference
modeling approach [6], [7], informed the development of generic query composition facilities.
Looking at the results of previous projects led to the identification and specification of
common domain-independent OLAP patterns that express query composition solutions for
specific types of information needs [2], [4]. While the experience gathered in previous research

105

CHAPTER 9. EVALUATION 106

projects was domain-specific, it allowed to obtain domain-independent OLAP patterns. Five
domain-independent OLAP patterns could be identified and defined. The thus identified
OLAP patterns can be divided into two groups (see details in Appendix B). The group of
basic patterns comprises the non-comparative analysis pattern, which represents generalized
multidimensional aggregation queries where no comparison is performed. The group of
comparative patterns, on the other hand, comprises the homogeneous subset-baseset, the
homogeneous subset-subset, and the heterogeneous subset-subset comparison patterns [2].
The term “homogeneous” refers to the fact that those patterns take into account only one
cube, whereas “heterogeneous” indicates that two separate cubes, possibly with different
schemas, are taken into account. Ultimately, the pattern-based approach turned out to be
successful in the agriProKnow project, as the required queries to answer the 43 analysis
questions (information needs) could be expressed using previously identified OLAP patterns.
It should be noted that more complex analysis questions required the successive application
of patterns to obtain the necessary input data.

Expressiveness of the pattern-based approach is demonstrated by the fact that this relatively
small set of identified patterns covered most of the information needs that arose in the
course of the agriProKnow project. It was possible to satisfy the arising information needs
promptly with little effort by using the OLAP patterns to query the data warehouse (see [1]
for further information). The homogeneous subset-complement comparison pattern had
only to be defined and added to the set of already identified OLAP patterns to cover the
remaining information needs (see details in Appendix B).

The experience gained in previous research projects led to the definition of domain-
independent patterns. In this regard, the information needs that arose in the previous
research projects can be regarded as a sort of “training set” of domain-independent patterns.
The domain-specific information needs that arose in the course of the agriProKnow project,
in turn, can be viewed as the “test set”, which allowed for the evaluation of the applicability
of domain-independent patterns to a specific domain. Since most of the encountered
domain-specific information needs that arose in the agriProKnow project could be satisfied
using the small set of previously identified domain-independent OLAP patterns, we conclude
that the OLAP pattern approach is both relevant and expressive while also applicable across
domains.

9.2 Quality Assessment as a Domain-Specific Language

We evaluate the ensemble of eMDM, pattern definition and usage language as well as
template macros as a domain-specific language (DSL) according to the Framework for
Qualitative Assessment of DSLs (FQAD) [91]. The FQAD considers the perspective of
a stakeholder, i.e., evaluator, by allowing for the evaluator to map their evaluation goal

CHAPTER 9. EVALUATION 107

to each fundamental quality characteristic (QC) of DSLs and its sub-characteristics, i.e.,
assign an importance level to each QC and a minimum required support level to each
sub-characteristic. We evaluate the DSL from the perspective of a language developer, i.e.,
the goal is to assess whether or not the specified language is completely and consistently
specified with regard to the necessary functionality. Assessment of the DSL’s support for
each QC then amounts to checking whether the DSL supports the QC’s sub-characteristics.
The DSL must achieve the determined minimum support level for each sub-characteristic.
The FQAD defines a set of QCs and sub-characteristics, which serve as the basis for
evaluation of the OLAP pattern approach. Tables 9.1 and 9.2 give an overview of evaluation
results for each QC and its sub-characteristics.

CHAPTER 9. EVALUATION 108

Ta
bl

e
9.

1:
Ev

alu
at

io
n

of
th

e
O

LA
P

pa
tte

rn
ap

pr
oa

ch
ac

co
rd

in
g

to
th

e
FQ

AD
[9

1]

#
D

SL
Q

ua
lit

y
(S

ub
-)

C
ha

ra
ct

er
ist

ic
Im

po
rt

an
ce

Le
ve

l
M

in
.

R
eq

ui
re

d
Su

pp
or

t
Le

ve
l

A
ss

es
se

d
Su

pp
or

t
Le

ve
l

Su
cc

es
s

Le
ve

l

1
Fu

nc
tio

na
lS

ui
ta

bi
lit

y
M

an
da

to
ry

Sa
tis

fa
ct

or
y

1.
1

Co
m

pl
et

en
es

s
St

ro
ng

su
pp

or
t

St
ro

ng
su

pp
or

t
Sa

tis
fa

ct
or

y
1.

2
Ap

pr
op

ria
te

ne
ss

St
ro

ng
su

pp
or

t
St

ro
ng

su
pp

or
t

Sa
tis

fa
ct

or
y

2
Us

ab
ilit

y
Ni

ce
to

ha
ve

Eff
ec

tiv
e

2.
1

Co
m

pr
eh

en
sib

ilit
y

No
su

pp
or

t
No

ta
ss

es
se

d
Sa

tis
fa

ct
or

y
2.

2
Le

ar
na

bi
lit

y
No

su
pp

or
t

So
m

e
su

pp
or

t
Eff

ec
tiv

e
2.

3
Nu

m
be

ro
fa

ct
ivi

tie
sf

or
ta

sk
ac

hi
ev

em
en

t
No

su
pp

or
t

St
ro

ng
su

pp
or

t
Eff

ec
tiv

e
2.

4
Li

ke
ab

ilit
y,

pe
rc

ep
tio

n
No

su
pp

or
t

No
ta

ss
es

se
d

Sa
tis

fa
ct

or
y

2.
5

O
pe

ra
bi

lit
y

No
su

pp
or

t
Fu

ll
su

pp
or

t
Eff

ec
tiv

e
2.

6
At

tra
ct

ive
ne

ss
No

su
pp

or
t

No
ta

ss
es

se
d

Sa
tis

fa
ct

or
y

2.
7

Co
m

pa
ct

ne
ss

No
su

pp
or

t
So

m
e

su
pp

or
t

Eff
ec

tiv
e

3
Re

lia
bi

lit
y

M
an

da
to

ry
Sa

tis
fa

ct
or

y
3.

1
M

od
el

ch
ec

kin
g

St
ro

ng
su

pp
or

t
St

ro
ng

su
pp

or
t

Sa
tis

fa
ct

or
y

3.
2

Co
rre

ct
ne

ss
St

ro
ng

su
pp

or
t

St
ro

ng
su

pp
or

t
Sa

tis
fa

ct
or

y
4

M
ain

ta
in

ab
ilit

y
De

sir
ab

le
Sa

tis
fa

ct
or

y
4.

1
M

od
ifi

ab
ilit

y
So

m
e

su
pp

or
t

So
m

e
su

pp
or

t
Sa

tis
fa

ct
or

y
4.

2
Lo

w
co

up
lin

g
So

m
e

su
pp

or
t

So
m

e
su

pp
or

t
Sa

tis
fa

ct
or

y
5

Pr
od

uc
tiv

ity
M

an
da

to
ry

Eff
ec

tiv
e

5.
1

De
ve

lo
pm

en
tt

im
e

St
ro

ng
su

pp
or

t
Fu

ll
su

pp
or

t
Eff

ec
tiv

e
5.

2
Am

ou
nt

of
hu

m
an

re
so

ur
ce

St
ro

ng
su

pp
or

t
St

ro
ng

su
pp

or
t

Sa
tis

fa
ct

or
y

CHAPTER 9. EVALUATION 109

Ta
bl

e
9.

2:
Ev

alu
at

io
n

of
th

e
O

LA
P

pa
tte

rn
ap

pr
oa

ch
ac

co
rd

in
g

to
th

e
FQ

AD
[9

1]
(c

on
tin

ue
d

fro
m

Ta
bl

e
9.

1)

#
D

SL
Q

ua
lit

y
(S

ub
-)

C
ha

ra
ct

er
ist

ic
Im

po
rt

an
ce

Le
ve

l
M

in
.

R
eq

ui
re

d
Su

pp
or

t
Le

ve
l

A
ss

es
se

d
Su

pp
or

t
Le

ve
l

Su
cc

es
s

Le
ve

l

6
Ex

te
ns

ib
ilit

y
Ni

ce
to

ha
ve

Sa
tis

fa
ct

or
y

6.
1

M
ec

ha
ni

sm
sf

or
us

er
st

o
ad

d
ne

w
fe

at
ur

es
No

su
pp

or
t

No
su

pp
or

t
Sa

tis
fa

ct
or

y
7

Co
m

pa
tib

ilit
y

M
an

da
to

ry
Eff

ec
tiv

e
7.

1
Do

m
ain

co
m

pa
tib

ilit
y

St
ro

ng
su

pp
or

t
St

ro
ng

su
pp

or
t

Sa
tis

fa
ct

or
y

7.
2

De
ve

lo
pm

en
tp

ro
ce

ss
co

m
pa

tib
ilit

y
St

ro
ng

su
pp

or
t

Fu
ll

su
pp

or
t

Eff
ec

tiv
e

8
Ex

pr
es

siv
en

es
s

M
an

da
to

ry
Eff

ec
tiv

e
8.

1
M

in
d

to
pr

og
ra

m
m

in
g

m
ap

pi
ng

St
ro

ng
su

pp
or

t
St

ro
ng

su
pp

or
t

Sa
tis

fa
ct

or
y

8.
2

Un
iq

ue
ne

ss
St

ro
ng

su
pp

or
t

Fu
ll

su
pp

or
t

Eff
ec

tiv
e

8.
3

O
rth

og
on

ali
ty

St
ro

ng
su

pp
or

t
Fu

ll
su

pp
or

t
Eff

ec
tiv

e
8.

4
Co

rre
sp

on
de

nc
e

to
im

po
rta

nt
do

m
ain

co
nc

ep
ts

St
ro

ng
su

pp
or

t
Fu

ll
su

pp
or

t
Eff

ec
tiv

e
8.

5
No

co
nfl

ict
in

g
ele

m
en

ts
St

ro
ng

su
pp

or
t

Fu
ll

su
pp

or
t

Eff
ec

tiv
e

8.
6

Ri
gh

ta
bs

tra
ct

io
n

lev
el

St
ro

ng
su

pp
or

t
Fu

ll
su

pp
or

t
Eff

ec
tiv

e
9

Re
us

ab
ilit

y
Ni

ce
to

ha
ve

Sa
tis

fa
ct

or
y

9.
1

Re
us

ab
ilit

y
No

su
pp

or
t

No
su

pp
or

t
Sa

tis
fa

ct
or

y
10

In
te

gr
ab

ilit
y

M
an

da
to

ry
Sa

tis
fa

ct
or

y
10

.1
In

te
gr

ab
ilit

y
St

ro
ng

su
pp

or
t

St
ro

ng
su

pp
or

t
Sa

tis
fa

ct
or

y
O

ve
ra

ll
Su

cc
es

s
Sa

tis
fa

ct
or

y

CHAPTER 9. EVALUATION 110

9.2.1 Determination of Importance Levels

The first step in DSL evaluation according to the FQAD is the assignment of an importance
level to each QC, which reflects the evaluation goal. The assignment of one of three
importance levels – Mandatory, Desirable, and Nice to Have – to each QC constitutes
the evaluator’s profile. The Importance Level column in Tables 9.1 and 9.2 shows the
importance level for each QC in the context of the OLAP pattern approach, which we
discuss in the following.

Mandatory QCs From our evaluator’s perspective functional suitability, reliability, pro-
ductivity, compatibility, expressiveness, and integrability are classified as mandatory QCs.
Functional suitability is considered mandatory because it refers to the degree to which the
language provides all the required functionality, i.e., the degree to which OLAP patterns
can be defined and used. Reliability refers to the degree to which OLAP patterns support
reliable solutions, that is, the execution of a pattern shall yield a query that meets its
specification [92]. Reliability is considered mandatory since the OLAP patterns should help
avoid erroneous and ambiguous definitions of recurring types of queries. Productivity is
considered mandatory because the goal of the OLAP pattern approach is to reduce the
effort required to satisfy BI user’s information needs by composing an appropriate OLAP
query. Compatibility, in this context, refers to process compatibility, i.e., the degree to
which the OLAP patterns “can be used in the domain and the development process” [91].
Since OLAP patterns should be used during development of BI and analytics solutions to
ease the composition of necessary OLAP queries, compatibility is considered mandatory.
Expressiveness is considered mandatory as well because it refers to the degree to which
a problem-solving strategy can be naturally represented by a language. Expressiveness is
particularly important for OLAP patterns, which represent problem-solving solutions for
certain types of information needs. Finally, integrability is considered mandatory: Real-world
data warehouse systems employ a variety of logical data models and query languages.
OLAP patterns must, therefore, be flexible regarding implementation variants and target
languages.

Desirable QCs Maintainability is considered desirable from a language developers per-
spective, however, it is not necessary for achieving the goal of providing the required
functionality.

Nice-to-have QCs In addition to the mandatory DSL-specific QCs, we consider usability,
extensibility, and reusability as nice-to-have QCs from our evaluator’s perspective. Although
the usability of a language cannot be neglected, we consider it as nice to have, as we

CHAPTER 9. EVALUATION 111

focus mainly on functional aspects in this work, i.e., on pattern definition and usage. We
acknowledge the general importance of usability for the OLAP pattern approach but, at
this point, we do not prioritize usability since it depends considerably on graphical notation
and user interfaces, which are not the focus of our evaluator’s goal. It should be noted
that from a DSL user’s perspective usability would be considered as mandatory. We do not
expect that users require extension mechanisms to define new language features since the
language supports the necessary steps for pattern definition and usage. Lastly, we do not
expect the pattern definition and usage languages as a starting point for the development
of a new language, i.e., reusability is considered nice to have.

The evaluator’s profile shown in the Importance Level column in Tables 9.1 and 9.2 represents
the importance of the QCs for a language developer. That is, it reflects the importance
of the QCs with respect to the goal of assessing the completeness and consistency of
the specified DSL with respect to the required functionality. It should be noted that this
importance classification may differ depending on the stakeholder under consideration [91].

9.2.2 Determining the Support Levels

The second step is to assess the support levels for the sub-characteristics of each DSL-
specific QC. For each sub-characteristic the minimum required level of support has to be
determined and the actual support level for the DSL has to be assessed. The support level is
one of the following [91]: No Support, Some Support, Strong Support, and Full Support is
provided by the language. We extend the set of predefined support levels with Not Assessed,
which for all practical purposes corresponds to No Support, except that it allows us to
state that we have not assessed a particular quality sub-characteristic or that it cannot be
assessed at the moment and hence we cannot state whether it is supported or not – this is
particularly relevant for sub-characteristics relating to usability.

The evaluator’s profile determines the minimum required support level for each sub-
characteristic, i.e., Mandatory QCs require at least Strong Support, Desirable QCs require
at least Some Support, and Nice to Have QCs require at least a No Support or, in our case,
Not Assessed. The results of assessing the support levels are obtained by taking into
account the textual syntax, the definitions of the OLAP pattern approach, and to some
extent the graphical notation.

Functional Suitability Completeness is considered Strong Support since the OLAP pat-
tern approach provides all the language constructs required to employ the pattern-based
approach to multidimensional data analysis (QC 1.1). This covers constructs to define
and represent multidimensional models that are enriched by business terms. In addition,
construct are provided to define and use patterns in the context of an associated eMDM. It

CHAPTER 9. EVALUATION 112

should be noted that more sophisticated concepts of multidimensional data analysis may
be relevant in other contexts. Since the proposed OLAP pattern approach in its current
form considers only the most important concepts, Full Support is not claimed. In addition,
appropriateness is considered Strong Support, adopting the appropriateness perspectives
described by Krogstie [93] (QC 1.2). First, domain appropriateness considers whether the
DSL is expressive enough to represent everything relevant in the domain, while avoiding
the expression of anything unrelated to the domain [93]. This is especially of relevance
as it concerns the quality to externalize the domain knowledge of users in order to be
interpreted by other users of the same domain [93]. Domain appropriateness is fulfilled since
the approach takes into account only the necessary structural and behavioral aspects of
multidimensional models, business terms, and patterns. Second, appropriateness regarding
comprehensibility concerns the social user interpretation, i.e., the statements "the audience
thinks an externalized model consist of" [93]. This affects the likelihood of errors that can
occur when different users read models designed by other different users [93]. We claim
that the proposed DSL satisfies comprehensibility appropriateness by avoiding construct
redundancy, in that all concepts are defined only once and can be expressed by exactly
one language statement and graphical representation, respectively. Comprehensibility ap-
propriateness is further promoted as only a few language constructs and statements are
needed to define a potentially high number of OLAP patterns. Furthermore, the DSL allows
defined OLAP patterns to vary greatly in their level of detail and flexibility, as there are
no restrictions on the pattern variables that can be defined and the built-in features of
the query languages used in the pattern templates. Additionally, Krogstie identifies the
appropriateness regarding the BI user’s language knowledge as relevant, as it describes how
close the conceptual representation of the DSL is to the user’s perception of reality [93].
The introduced DSL supports BI user language knowledge appropriateness as parts of it
are based on common concepts in the domain of data warehousing (see alignment with
the DFM [25]), hence, we expect a reasonable learning curve for language users who are
familiar with basic OLAP and multidimensional modeling constructs. The BI users language
knowledge appropriateness is also promoted as we avoid unnecessary diversity in our DSL
that could confuse an inexperienced user; business terms and patterns are similar in their
structure, i.e., they consist of some kind of variables, constraints, and templates, and in
their use, i.e., variables are being substituted while templates are being preprocessed. Finally,
appropriateness regarding technical actor interpretation is fulfilled, as all DSL language
constructs are rigorously defined and further detailed by natural language descriptions of
their semantics and corresponding examples; this also includes the description of the pattern
execution process to obtain executable OLAP queries. It should be noted that Krogstie also
mentions appropriateness in terms of the externalizability of knowledge [93] to be relevant,

CHAPTER 9. EVALUATION 113

but we do not consider it here as it primarily concerns usability.

Usability The avoidance of construct redundancy create the necessary conditions to fulfil
comprehensibility appropriateness, but the specific effort required to understand the language
in terms of comprehensibility (QC 2.1) is not assessed, as this is largely dependent on user
interfaces with extensive graphical support. Likewise, the ability to learn and remember the
concepts and symbols [91] of the DSL is not assessed, although we provide the necessary
foundations to fulfill the BI user’s language knowledge appropriateness. However, due
to the limited number of concepts, statements, and symbols, and through the reuse of
the symbols in the eMDM and pattern notation, we claim that there is some support for
the ability to learn the DSL (QC 2.2). Similarly, likeability (QC 2.4), i.e., the ability of
users to recognize that the DSL is suitable for their needs, and attractiveness (QC 2.6),
i.e., the appealing appearance of symbols, are not assessed as they depend on subjective
user interaction with a graphical interface. Nevertheless, our graphic notation for the
DSL constructs aims to be easy to perceived, likeable and attractive. To this end, the
design principles for graphical notations introduced by Moody [83] are taken into account
to achieve a cognitively effective graphical representation (see details in Section 4.3 and
Section 5.2). In addition, we adopt widely used and popular graphical notations as the basis
for the DSL constructs, i.e., the graphical representation of multidimensional models is
based on the DFM notation [25], while the representation of patterns follows the common
table- and section-oriented pattern style [33]. Furthermore, the DSL provides a strong
support of the activities necessary to achieve the task (QC 2.3) [91], i.e., the minimum
number of steps to define a pattern, put it into use, and to organize it are supported. For
this purpose, the language provides the necessary language constructs and statements to
define eMDMs and patterns (Figure 2.2), to use patterns in the context of an associated
eMDM (Figure 2.3), and to organize eMDM elements and patterns (Figure 7.4. The DSL
also fully supports operability (QC 2.5) by providing language statements that making it
easy to operate and control the language [91], i.e., a concise grammar is provided defining
the supported statements to be formulated. Finally, the DSL provides some support to
grouping eMDM elements and patterns at different levels of abstraction (see Chapter 7) so
that a compact representation is possible (QC 2.7).

Reliability Correctness is considered to be supported strongly since possible errors are
avoided by providing strict syntax rules and rigorous definitions (QC 3.2). Furthermore,
constraints and derivation rules allow for checking the applicability of a pattern with respect
to an eMDM, thus avoiding the generation of non-executable OLAP queries (QC 3.1). To
this end, we follow the design-by-contract metaphor [28], which, according to Paige et al.
[92], allows to support reliability, i.e., the pattern author defines the context, which can

CHAPTER 9. EVALUATION 114

be seen as a contract that specifies the conditions that have to be satisfied to obtain an
executeable OLAP query, while a pattern user can expect to obtain an executable OLAP
query by instantiating the pattern in such a way that it satisfies the constraints of the
pattern. Consequently, the proposed OLAP pattern language promotes correct and valid
definition and usage of patterns. It should be noted that full support for model checking
and correctness is not claimed, as the pattern author must guarantee that the pattern
templates are formulated to follow the described solution; the proposed OLAP pattern
approach cannot check this in advance, since the query language used is considered to be
text only and thus its semantics cannot be checked.

Maintainability The DSL supports modifiability (QC 4.1) to some extent. Due to the
well-structured and concise formalizations and language definitions, it is easy to determine
where changes need to be made and where extensions can be made, respectively. Similarly,
the DSL only provides some support for low coupling (QC 4.2), i.e., it depends on the
changes and extensions made how much they affect other DSL components. Adding
additional functionality to patterns, for example, does not affect the underlying eMDM
formalizations, but if changes are made to the underlying eMDM formalizations it may
affect the patterns.

Productivity The idea to increase the productivity by reducing the effort to compose an
OLAP query is inherent to OLAP patterns. Although the definition of an OLAP pattern
is a time-consuming task for the pattern author, patterns can considerably reduce the
composition time of OLAP queries for numerous different pattern users later on. More
importantly, the effort to define a pattern must be invested only once, while individual
OLAP queries are composed many times, resulting in potentially huge savings of effort
(QC 5.1). Furthermore, users of OLAP patterns only need to consider the conceptual level
to obtain executable queries, reducing the knowledge and effort required to obtain the
desired OLAP query. This, in turn, could reduce the need to consult pattern authors since
BI users can consult the pattern catalog (QC 5.2). In the agriProKnow project, we found
that the pattern users, i.e., domain experts, were able to express the desired OLAP query
in terms of pattern usage.

Extensibility The DSL does not provide mechanisms for pattern authors to add new
functionality, as we assume that the DSL supports all the necessary functionality for defining,
using, and organizing patterns. However, from a pattern user’s perspective, the defined
corpus of patterns constitutes the DSL, i.e., the defined patterns specify the vocabulary
available to pattern users in analysis situations. Therefore, pattern authors and user,

CHAPTER 9. EVALUATION 115

respectively, can easily extend their DSL by defining new patterns and instantiating existing
patterns.

Compatibility The proposed DSL is compatible with the data warehouse domain as it
can be used for a data warehouse system as long as a conceptual representation of the
data warehouse is available, i.e., an eMDM exists (QC 7.1). It should be noted that the
DSL can be used irrespective of the data warehouse’s logical realization, i.e., star/snowflake
schema or multidimensional array, since it operates primarily on the conceptual level
(assuming necessary mapping information is defined (see Section 6.2)). In addition, domain
compatibility is promoted by allowing the vocabulary used in the analysis to be conceptualised
by business terms and by allowing the OLAP query composition solution for specific types
of information needs to be conceptualised by OLAP patterns. The proposed OLAP pattern
language is also compatible with the development processes of data warehouses and
OLAP queries (QC 7.2). In the course of designing a data warehouse, for example, a
multidimensional model is created, which can be enriched with business terms and considered
in future pattern definitions. Additionally, existing OLAP patterns can be integrated into
the process of composing (ad hoc) OLAP queries as well as into the process of eliciting
requirements of OLAP queries to be composed.

Expressiveness The OLAP approach has Strong Support for expressiveness, which is one
of the most important QCs of DSLs [91] since pitfalls that can occur when designing DSLs
have been taken into account and avoided [94]. First, only relevant concepts regarding the
definition and usage of patterns in the data warehousing domain are considered, i.e., the
definitions are concise, clean, and avoid clutter (QC 8.4). Second, each concept is defined
exactly once (QC 8.2) and only one representation is available for each of them in the
corresponding syntax and graphical notation (QC 8.3). Note that although patterns and
business terms share some design principles, they are uniquely and clearly defined. Third,
the DSL allows logical aspects to be taken into account, despite the fact that it is defined
at the conceptual level. Thus, the chosen level of abstraction is adequate, since it allows
to consider both conceptual and logical aspects in order to generate executable OLAP
queries (QC 8.6). Fourth, the definitions are coherent and consistent, i.e., there are no
contradictions and conflicting concepts (QC 8.5). Lastly, the DSL supports the mapping
of an OLAP query pattern composition solution, since statements considering both the
conceptual as well as the logical level can be formulated (QC 8.1).

Reusability The DSL does not support reusability in the sense of full or partial reuse
in another DSL. However, this does not exclude that individual DSL constructs, parts of
the grammar, or elements of the graphical notation could be reused directly or modified

CHAPTER 9. EVALUATION 116

in other DSLs. For example, the DSL for solution patterns for machine learning [14], [15]
presented by Nalchigar and Yu could incorporate the OLAP pattern approach in their data
preparation view.

Integrability Finally, the language has Strong Support for integrability of different data
models, logical realization variants, and different host-specific languages by defining corres-
ponding templates (QC 10.1). Furthermore, integrability can be fostered by formulating the
templates using generic OLAP query languages that are independent of a specific realization
[95], [96].

9.2.3 Determining the Success Levels

The third step according to the FQAD is to determine the success level for each QC and
its sub-characteristics. The level of success of the sub-characteristics can be determined
by considering the minimum required and assessed support level. The available success
levels Incomplete, Satisfactory, and Effective are assigned to each sub-characteristic as
follows: a sub-characteristic is Incomplete if its assessed support level does not meet the
minimum required support level, a sub-characteristic is Satisfactory if its support level
exactly matches the minimum required support level, and a sub-characteristic is Effective

if its support level exceeds the minimum required support level [91]. The success level
of the sub-characteristics impacts the success level of the corresponding QC as follows:
the success level of the corresponding characteristic is Incomplete, if there exists one sub-
characteristic with an Incomplete success level, is Satisfactory, if all sub-characteristics
have an Satisfactory success level, and Effective, if there exists only sub-characteristics
with at least Satisfactory success level and with at least one sub-characteristic with a
Effective success level (see column Success Level in Table 9.1 and Table 9.2). Finally, the
overall success can be determined by considering the minimum success level amongst all
the quality characteristics. The language evaluation can be determined successful if all QCs
are considered at least as Satisfactory [91].

Looking at the column Success Level in Tables 9.1 and 9.2, we conclude that for each
QC a success level could be determined that is better or equal to Satisfactory. Thus, we
conclude that the presented DSL is successful from the perspective of a language developer,
i.e., it is completely and consistently specified with respect to the required functionality to
define, use, and organize patterns.

The result of this quality assessment is only meaningful with regard to the perspective of
a language developer, but not with respect to other stakeholders. Kahraman and Bilgen
identify, in addition to the DSL users who apply the DSL to obtain executable models, other
stakeholders, i.e., managers, domain experts and DSL implementers, whose perspective

CHAPTER 9. EVALUATION 117

could also be taken into account [91]. Managers focus on the organizational and process
aspects of a DSL and whether it can lead to the development of new products, i.e., whether
or not it is worth investing in the DSL development [91]. In contrast, domain experts define
the functional and non-functional requirements based on the existing domain knowledge
[91], while DSL implementers are responsible for realising the semantics of the DSL, i.e.,
implementing compilers and associated libraries [91]. We have focused on the language
developer’s perspective, as the aim of this thesis is to provide a completely and consistently
defined DSL supporting the pattern-based approach to data analysis.

Chapter 10
Extensions

In this chapter, we outline how the core pattern-based approach can be extended in multiple
directions to further increase the expressiveness and versatility of OLAP patterns. We
describe each possible extension informally using exemplified language statements without
providing a detailed formalization. We consider each of these extensions independently,
without reference to the extensions already described. These extensions are orthogonal to
the essence of the pattern-based approach presented in this thesis.

10.1 Composite Types

We presented the core pattern-based approach with atomic variables for parameters and
derived elements. Consequently, exactly one name can be bound to such parameters and
derived elements. For example, a pattern with only two business term parameters is limited
to information needs that require the specification of exactly two business terms. However,
this limits the generic nature of such a pattern, as it can impede a user from using it if
in order to answer its business question more than two business terms that need to be
provided. The core pattern-based approach can circumvent that problem to some extend
by creating several “versions” of existing patterns with different sets of parameters – at the
cost of clarity.

In addition to constructors for atomic types, we can introduce constructors for composite
types and combinations thereof. To this end, the composite types arrays, maps, and tuples
are introduced. Arrays and maps are used to represents collections; arrays are indexed by
integers, while maps consist of key-value pairs. In contrast, tuples are used to relate values
bound to array, map, and atomic variables; tuples are represented as ordered lists of values
containing either two values (binary) or three values (ternary).

118

CHAPTER 10. EXTENSIONS 119

1 CREATE PATTERN "Happy Milk Farm"/"Dairy Catalog"/"Breed -Specific

Subset -Subset Comparison" WITH

2 PARAMETERS

3 <sourceCube >:CUBE;

4 ...

5 <compDimRole >[]: DIMENSION_ROLE;

6 <iDimSlice >[]: UNARY_DIMENSION_PREDICATE;

7 <iDimSlice2CompDim >()[]: BINARY_TUPLE;

8 ...

9 END PARAMETERS;

10

11 DERIVED ELEMENTS

12 <compDim >*: DIMENSION

13 FOR <r> IN <compDimRole >[] WITH

14 <compDim >*[<r>] <= <sourceCube >.<r>;

15 ...

16 END DERIVED ELEMENTS;

17 ...

18 CONSTRAINTS

19 FOR <r> IN <compDimRole >[] WITH

20 <sourceCube > HAS DIMENSION_ROLE <r>;

21

22 FOR (<i>,<j>) IN <iDimSlice2CompDim >()[] WITH

23 <i> IN <iDimSlice >[],

24 <j> IN <compDim >*,

25 <i> IS_APPLICABLE_TO <j>;

26 ...

27 END CONSTRAINTS;

28 END PATTERN;

Listing 10.1: Extract from the redefinition of breed-specific subset-subset
comparison using composite type constructors for parameters and derived elements.

Example 10.1 (Pattern definition with composite type constructors). The extract of the
redefinition of the breed-specific subset-subset comparison in Listing 10.1 contains paramet-
ers and derived elements defined via constructors of composite types. The ⟨compDimRole⟩
parameter is defined as an array of dimension roles (Line 5), the ⟨iDimSlice⟩ parameter is
defined as an array of unary dimension predicates (Line 6), and the ⟨iDimSlice2CompDim⟩
parameter is defined as an array of binary tuples (Line 7), while the ⟨compDim⟩ derived
element is defined as a map with dimensions as values (Line 12). ♢

With the extension of type constructors to arrays, maps, and tuples, we also introduce
extensions of constraint and derivation expressions. We introduce the definition of constraints

CHAPTER 10. EXTENSIONS 120

and derivation rules over a range of values, i.e., constraints and derivation rules can contain
array or map variables, or address columns of tuple variables. In addition, we introduce the
definition of constraints for tuple columns, that is, for tuple variables, possible values to
be bound to specific tuple columns can be restricted to values bound to specific variables.
Furthermore, the meaning of the relationship between the column values of a tuple can be
expressed by defining which constraints are to be considered between them.

Example 10.2 (Constraints and derivation rules with composite variables). In addition to
the definition of composite parameters, Listing 10.1 contains constraints and derivation rules
defined over the range of composite variables or references to columns of tuple variables. For
the derived element ⟨compDim⟩∗ the derivation rule for each dimension to be derived is defined
by iterating over the parameter ⟨compDimRole⟩[]; for each iteration the current dimension
role is assigned as the property of the corresponding derivation rule (Line 14. It should be
noted that the derived value can be access by accessing ⟨compDim⟩∗ using the dimension
role as a key. Note that the derived value can be accessed by accessing ⟨compDim⟩∗ using
the dimension role as a key. The relationship between the ⟨sourceCube⟩ cube parameter
and the ⟨compDimRole⟩[] parameter is again defined by iteration of the ⟨compDimRole⟩[]
parameter; per iteration the current dimension role is defined as a dimension role that
has to exists for the cube bound to ⟨sourceCube⟩. For the binary tuple array parameter
⟨iDimSlice2CompDim⟩()[] multiple constraints are defined with respect to the columns of
the tuples to be bound as follows: Each value bound to the first column of a tuple must be
among the values bound to the parameter ⟨iDimSlice⟩[], each value bound to the second
column of a tuple must be among the values bound to the parameter ⟨compDim⟩∗, and each
value bound to the first column must be applicable to the value bound to the corresponding
second column; note that the first column value is restricted to a unary dimension predicate,
while the second column value is restricted to a dimension. ♢

Finally, we extend the available set of (first-level) macros with second-level macros, which
allow to operate on complex variables in pattern templates (see Table 10.1). Second-level
macros support the generation of expressions, which in turn can contain other first- and
second-level macros. Consequently, second-level macros must be processed before first-level
macros. We distinguish second-level macros from first-level macros using the $$ prefix.

CHAPTER 10. EXTENSIONS 121

Macro Description

$$for $$for($$var IN ⟨array⟩[]){ ⟨body_exp⟩ } iterates entries of an array
(⟨array⟩[]) and generates for each entry ($$var) the expression defined in
its body. The body, enclosed by curly brackets, can contain constants, other
macros, and access the $$var variable.

$$if $$if(⟨cond⟩){ ⟨body_exp⟩ } evaluates a specified condition (⟨cond⟩)
whether it is true or false. If the condition is fulfilled the expression defined
in its body is generated. The body is enclosed by curly brackets can contain
constants and other macros.

$$last $$last(⟨entry⟩, ⟨array⟩[]) returns true if the entry is the last array entry,
otherwise, false.

$$not $$not(⟨cond⟩) returns true if the condition returns false, otherwise, false.

Table 10.1: Second level macros for handling composite variables in templates

1 ...

2 interestCube AS (

3 SELECT $expr(<groupCond >, jd),

4 $expr(<cubeMeasure >, bc) AS <cubeMeasure >

5 FROM baseCube bc

6 JOIN <joinDim > jd ON

7 bc.<joinDimRole >=jd.$dimKey(<joinDim >)

8 $$for($$r IN <compDimRole >[]) {

9 JOIN <compDim >*[$$r] cd_$$r ON

10 bc.$$r=cd_$$r.$dimKey(<compDim >*[$$r])

11 }

12 WHERE $$for(($$i ,$$j) IN <iDimSlice2CompDim >()[]) {

13 $expr($$i , $$j)

14 $$if($$not($$last(($$i ,$$j),

<iDimSlice2CompDim >()[]))) { AND }

15 }

16 GROUP BY $expr(<groupCond >, jd)

17),

18 ...

Listing 10.2: Extract from a template of the redefined breed-specific
subset-subset comparison pattern.

Example 10.3 (Pattern template with second level macros). Listing 10.2 depicts an
extract of a template added to the pattern defined in Listing 10.1. The names bound to
⟨compDimRole⟩[] are iterated using the $$r variable (Lines 8-11). A join condition expression

CHAPTER 10. EXTENSIONS 122

is generated for each dimension role bound to $$r as follows: the dimension referenced by
the dimension role $$r is obtained by accessing the ⟨compDim⟩∗ using the $$r as the key,
the received dimension is provided with an alias consisting of cd_ and $$r (Line 9), then
base cube bc is joined via the dimension role $$r with the dimension via its dimension key
(Line 10). In addition, for each tuple in ⟨iDimSlice2CompDim⟩[] a selection expression is
generated (Lines 12-15), consisting of an $expr macro call that contains the first value of
the tuple as its first argument and the second value of the tuple as its second argument
(Line 13); AND is added to the expression as long as another tuple to be iterated exists
(Line 14). ♢

With variables defined via constructors for composite types, patterns can be defined without
limiting the number of bindings to variables of a certain type to exactly one. This can
significantly increase the genericity of patterns, as it allows a large number of similar
information needs of a particular type of information need to be met. Furthermore, already
instantiated patterns can also be refined by binding additional names to already bound
parameters.

1 INSTANTIATE PATTERN "agriProKnow"/"agriProKnow

Patterns"/"Breed -Specific Subset -Subset Comparison" AS "Happy

Milk"/"Dairy OLAP Patterns"/"Breed -Specific Subset -Subset

Milking -Comparison" WITH BINDINGS

2 <sourceCube > = "Milking",

3 ...

4 <compDimRole >[] = { "Milking Time", "Farm" },

5 ...

6 <iDimSlice2CompDim >()[] = {

7 ("2020 -11 -05", <compDim >*["Milking Time"]),

8 ("Linz", <compDim >*["Farm"]) }

9 END BINDINGS;

Listing 10.3: Detail of a pattern instantiation with collection variables

Example 10.4 (Instantiation of a pattern with composite parameters). Listing 10.3 repres-
ents an extract from an instantiation of the pattern defined in Listing 10.1. A single name
is bound to the atomic parameter ⟨sourceCube⟩ (Line 2). An ordered set of names consist-
ing of the two names Milking Time and Farm is bound to the parameter ⟨compDimRole⟩[].
Finally, an ordered set of binary tuples consisting of two tuples is bound to the para-
meter ⟨iDimSlice2CompDim⟩[] (Line 6; the first tuple consists of the unary predicate name
2020-11-05 and the dimension referenced by the dimension role named Milking Time Line 7,

CHAPTER 10. EXTENSIONS 123

while the second tuple consists of the unary predicate name Linz and the dimension
referenced by the dimension role named Farm Line 8. ♢

10.2 Optional Variables

The presented pattern-based core approach is based on mandatory variables, which is why
exactly one name must always be linked to corresponding parameters and derived elements.
However, the obligation to provide a value for each variable affects the generic nature of
patterns. Consider, for example, a pattern with a mandatory parameter representing a
unary cube predicate that allows to restrict business events captured by the specified source
cube. However, if a user with an information need of the type covered by the pattern does
not need to restrict the source cube to answer the business question, the pattern cannot be
used. This problem can also be circumvent to some extend by creating several “versions”
of existing patterns with different sets of parameters.

We extend the pattern-based core approach with optional variables to overcome this
disadvantage. Optional variables allow parameters to be specified as optional, allowing users
to omit name bindings to parameters that are unnecessary to satisfy a particular information
need. Accordingly, derived elements that contain optional parameters in the corresponding
derivation rules are also defined as optional. It should be noted that derivation rules as well
as constraints with optional unbound variables are not considered during execution.

1 CREATE PATTERN "Happy Milk Farm"/"Dairy Catalog"/"Breed -Specific

Subset -Subset Comparison" WITH

2 PARAMETERS

3 <sourceCube >:CUBE;

4 <baseCubeSlice >: UNARY_CUBE_PREDICATE IS_OPTIONAL;

5 ...

6 END PARAMETERS;

7 ...

8 CONSTRAINTS

9 <baseCubeSlice > IS_APPLICABLE_TO <sourceCube >;

10 ...

11 END CONSTRAINTS;

12 END PATTERN;

Listing 10.4: Extract from the redefinition of breed-specific subset-subset
comparison with optional parameters.

Example 10.5 (Pattern definition with optional variables). Listing 10.1 shows an extract
of the redefinition of the breed-specific subset-subset comparison containing an optional

CHAPTER 10. EXTENSIONS 124

parameter. The ⟨baseCubeSlice⟩ parameter is defined as optional (Line 4). It should be
noted that the applicable-to constraint that defines that the business term bound to the
parameter ⟨baseCubeSlice⟩ parameter to be applicable to the cube bound to the parameter
⟨sourceCube⟩ is only considered (Listing 9) if the ⟨baseCubeSlice⟩ parameter is bound. ♢

Macro Description

$$empty $$empty(⟨var⟩) returns true if the variable ⟨var⟩ is unbound, false if not.

$$if $$if(⟨cond⟩){ ⟨body_exp⟩ } evaluates a specified condition (⟨cond⟩)
whether it is true or false. If the condition is fulfilled the expression defined
in its body is generated. The body is enclosed by curly brackets can contain
constants and other macros.

Table 10.2: Second-level macro for handling optional variables in templates

Finally, we introduce second level macros, which allow to consider unbound optional variable
in pattern temples (see Table 10.2). Second-level macros are prefixed by $$ and must be
processed before other first-level macros.

1 ...

2 WITH baseCube AS (

3 SELECT *

4 FROM <sourceCube > sc

5 JOIN <baseDim > a ON

6 sc."Cattle"=a.$dimKey(<baseDim >)

7 WHERE $$if($$empty(<baseCubeSlice >)) {

8 $expr(<baseCubeSlice >, sc) AND

9 }

10 $expr(<cattleBreed >, a)

11)

12 ...

Listing 10.5: Extract from a template of the pattern
defined in Listing 10.4.

Example 10.6 (Pattern template with optional variables). Listing 10.5 depicts an extract
of a template added to the pattern defined in Listing 10.4. The second level macros are
used to check whether the ⟨baseCubeSlice⟩ is unbound or not (Line 7, if it is bound the
first level macro call in Line 8 is considered as part of the pattern’s template. ♢

CHAPTER 10. EXTENSIONS 125

By defining patterns with optional variables, the genericity of patterns can be significantly
increased. Users with information needs that correspond to the type of information need
covered by the pattern, but with fewer restrictions necessary, for example, can thus be
supported.

10.3 Generic Business Terms

In the presented approach, new business terms have to be defined from scratch if necessary
functionality is not provided by existing terms. Although the definition of new business
terms is supported, it requires a certain cognitive effort and knowledge of the conceptual
model and the respective query language. Users who lack this knowledge will have difficulty
defining the business terms they need. In such a case, the application of a pattern may also
be prevented. In the core pattern approach, the problem can be avoided to a certain extent
by defining a comprehensive vocabulary. Users, however, will still have to define missing
business terms themselves if a business term is not avaialable.

In addition to the already presented (specific) business terms, we introduce generic business
terms. Generic business terms can reduce the need to define business terms from scratch,
as they can be defined once and specialized several times through instantiation, resulting in
different (specific) business terms. To this end, generic business terms provide – in addition
to context parameters – parameters that enable the adaptation of constraints and expression
templates, i.e., constraint and template parameters. Constraint parameters are used to refer
to multidimensional model elements and value sets that are used to adapt the constraints
of a business term accordingly. This allows the dynamic specification of elements of type,
property, and domain constraints that refer to multidimensional model elements and value
sets; however, elements of constraints that refer to types of multidimensional elements
cannot be specified dynamically. In contrast, template parameters are used to customise
expression templates of a business term by referencing values of a certain value set, i.e.
primitive values; template parameters are not used to adapt constraints. It should be noted
that constraint parameters can also be used to customise the expression templates of a
business term.

Example 10.7. (Generic Business Term) The generic business term Generic Aggregated

Measure (Listing 10.6, Lines 1-17) represents a generic unary calculated measure that
applies an aggregation operation to a measure. The constraint parameter ⟨cubeMeasure⟩
(Line 3) allows to specify the cube measure (Line 12) to be aggregated, while the constraint
parameter ⟨measureDom⟩ (Line 4) allows to specify the domain (Line 13) of the aggregated
measure; the domain also defines the return type of the unary calculated measure (Line 16).
The template parameter ⟨aggregation⟩ (Line 8) allows to specify the aggregation operation

CHAPTER 10. EXTENSIONS 126

to be performed. The specified aggregation operation must be a value from the string
value set AGGREGATION_OPERATION in order to be used to adapt the expression template
of the term (Lines 19-23). Besides the templates parameter ⟨aggregation⟩, the expression
template also contains the constraint parameter ⟨cubeMeasure⟩. ♢

1 CREATE UNARY_CALCULATED_MEASURE "Generic Repository"/"Generic

Business Terms"/"Generic Aggregated Measure" WITH

2 CONSTRAINT PARAMETERS

3 <cubeMeasure >: MEASURE;

4 <measureDom >: NUMBER_VALUE_SET;

5 END CONSTRAINT PARAMETERS;

6

7 TEMPLATE PARAMETERS

8 <aggregation >: AGGREGATION_OPERATION;

9 END TEMPLATE PARAMETERS;

10

11 CONSTRAINTS

12 <ctx > HAS MEASURE <cubeMeasure >;

13 <ctx >.<cubeMeasure >:<measureDom >;

14 END CONSTRAINTS;

15

16 RETURNS <measureDom >;

17 END UNARY_CALCULATED_MEASURE;

18

19 CREATE TERM TEMPLATE FOR "Generic Repository"/"Generic Business

Terms"/"Generic Aggregated Measure" WITH

20 LANGUAGE = "SQL";

21 DIALECT = "ORACLEv11";

22 EXPRESSION = ""<aggregation >"("<ctx >"."<cubeMeasure >")";

23 END TERM TEMPLATE;

Listing 10.6: Definition of the generic unary calculated measure Generic

Aggregated Measure with its template for the language SQL in the Oracle 11
dialect

As mentioned above, generic business terms can be specialised by instantiation to meet a
specific information need. Only generic business term that are free of unbound constraint
and template parameters can be applied in the course of a pattern application. The
generic business term to be specialized can either be found in vocabulary of an local
enriched multidimensional model or in vocabularies defined for more abstract enriched
multidimensional models.

Example 10.8 (Generic Business Term Instantiation). The generic business term Generic

Aggregated Measure (Listing 10.7) can be instantiated as follows to obtain the (specific)

CHAPTER 10. EXTENSIONS 127

business term Average Milk Yield (Listing 4.3). The constraint parameter ⟨cubeMeasure⟩
is bound to the measure name Milk Yield (Line 3), the name of the numerical value set
Lidquid In Liter is bound to the constraint parameter ⟨measureDom⟩ (Line 4), and the
aggregation operation AVG is bound to the template parameter ⟨aggregation⟩ (Line 5). ♢

1 INSTANTIATE TERM "Generic Repository"/"Generic Business

Terms"/"Generic Aggregated Measure" AS "Happy

Milk"/"Diary Vocabulary"/"Average Milk Yield" WITH

2 BINDINGS

3 <cubeMeasure > = "Milk Yield",

4 <measureDom > = "Liquid In Liter",

5 <aggregation > = "AVG"

6 END BINDINGS;

Listing 10.7: Instantiation of the generic business term Generic Aggregated

Measure

10.4 Description of Value Sets

The presented core concepts take into account only names of value sets. Value sets, however,
may be extended by the scale of measurement, i.e., nominal, ordinal, interval, and ratio
values, by a base type with conditions that values must meet, and by an enumeration of
allowed values. In addition, value sets may be detailed by defining the unit of measurement
– conversions between these units can be recorded separately.

We introduce comprehensive descriptions of value sets to cover additional information. To
this end, we introduce value spaces, the unit of measurements, and conversions for number
value sets. Value spaces allow to define the digits after the comma (precision), the digits
before the comma (scale), the level of measurement, and value boundaries (greater than,
lower than). Alternatively, a value space can include an enumeration of allowed values
instead of value boundaries. In addition, the unit of measurement and its abbreviation
are captured. Conversions state how a value from one value set can be represented as a
value of another value set. For string value sets only the value space is defined, that is, an
ordered list of allowed values as well as its level of measurements can be defined.

CHAPTER 10. EXTENSIONS 128

1 CREATE STRING_VALUE_SET "Happy Milk"/"Diary MDM"/"Breed Name" WITH

2 VALUE_SPACE

3 ALLOWED = { "Friesian", "Guernsey", "Holstein", "Jersey" }

4 LEVEL = "NOMINAL";

5 END VALUE_SPACE;

6 END NUMBER_VALUE_SET;

Listing 10.8: Definition of the string value set Breed Name

1 CREATE NUMBER_VALUE_SET "Happy Milk"/"Diary

MDM"/"Liquid In Liter" WITH

2 VALUE_SPACE

3 PRECISION = "8";

4 SCALE = "2";

5 LEVEL = "RATIO";

6 GREATER_THAN = "0.00";

7 END VALUE_SPACE;

8

9 UNIT_OF_MEASUREMENT

10 NAME = "LITER";

11 ABBREVIATION = "L";

12 END UNIT_OF_MEASUREMENT;

13

14 CONVERSIONS

15 "Milliliter" = "1000";

16 "Deciliter" = "10";

17 "Hectoliter" = "0.01";

18 END CONVERSIONS;

19 END NUMBER_VALUE_SET;

Listing 10.9: Definition of the number value set Liquid

In Liter

Example 10.9. (Descriptions of Value Sets) Listing 10.9 depicts the definition of the string
value set Breed Name. The allowed values are limited to the breeds Friesian, Guernsey,
Holstein and Jersey (Line 3) that are of nominal measurement level (Line 3). The number
value set Liquid In Liter is defined in Listing 10.9. The values represent liters (Lines 9-12)
and are ratio-scaled numbers (Line 5) above zero (Line 6) that are defined with a precision
of eight digits and a scale of two digits (Lines 3-4). In addition, conversions to Milliliter,
Deciliter, and Hectoliter are defined (Lines 14-18). ♢

Providing comprehensive descriptions for value sets is not essential to the pattern-based
approach but it can facilitate the interpretation of results obtained by processing the
generated OLAP query.

Chapter 11
Conclusion

In this thesis, we have presented the core concepts of a pattern-based approach to multidi-
mensional data analysis. OLAP patterns allow to capture implicit expert knowledge in data
analysis, i.e., solutions for satisfying certain types of information needs by means of OLAP
queries, in a form that allows them to be shared across domain boundaries. In addition,
OLAP patterns support the generation of queries using templates that can be enriched
with corresponding macros to bridge the gap between the conceptual and the logical level.
The conceptual representation of a multidimensional model, extended with definitions of
business terms that represent different types of query functionality, serves as a basis for the
definition and usage of OLAP patterns.

11.1 Summary

BI projects for developing OLAP systems often suffer from requirements of actual BI users
being vague. This is because the queries to be supported are usually not known in advance,
as they depend on the particular data warehouse design and the data to be integrated.
However, when requirements are vague, it is not possible to evaluate the data warehouse
design early on, i.e., whether it will meet the information needs that will actually arise.
This problem can be addressed to some extent by taking into account knowledge about the
composition of OLAP queries from previous experience. Such knowledge may come from
the use of existing OLAP systems or previous BI projects within the organization, other
organizations, or even other domains.

We have observed that within the same organization and even in other organizations and
domains, similar OLAP queries are regularly assembled from scratch to satisfy similar
information needs. For this reason, we have presented a pattern-based approach to
multidimensional data analysis that allows knowledge to be documented within and across

129

CHAPTER 11. CONCLUSION 130

organizations and domains as OLAP queries are composed. In this way, OLAP patterns
enable the capture of best practices in the composition of OLAP queries to answer different
types of information needs in the specific data analysis context, taking into account logical
dependencies. By documenting the key aspects to consider when composing an OLAP
query to answer a specific type of information need, OLAP patterns enable knowledge
transfer across organizations and domains. Depending on the required context, OLAP
patterns can be defined in a domain-independent, domain-specific, and organization-specific
manner. This ultimately enables the sharing of catalogs of OLAP patterns to define a
standard vocabulary that can be used in BI projects in specific domains and beyond.

To this end, in this thesis we have presented a formal definition of OLAP patterns and the
underlying eMDM. We also formally define how OLAP patterns can be used by means of
instantiation, grounding, and execution with respect to an associated eMDM. A textual
language is presented to easily define eMDMs and OLAP patterns. Also, a graphical
notation is provided to facilitate communication among stakeholders. In addition, means
for organizing patterns along the abstraction levels of organization-specific, domain-specific,
and domain-independent patterns are presented. This includes the orthogonal organization
of OLAP patterns and eMDM elements into catalogs, multidimensional models, and
vocabularies. Both the concepts presented for defining and using patterns and the associated
language elements have been successfully evaluated as a DSL. Finally, the feasibility of
the pattern-based approach to multidimensional data analysis has been demonstrated by a
prototype implementation.

11.2 Discussion

The introduction of patterns in other domains, such as architecture [29] and software
engineering [13], has shown that patterns can promote the transfer of knowledge about
established solutions for certain recurring problems. In the context of the research and
development project agriProKnow we could show that domain-independent OLAP patterns
can be used to abstract and document knowledge from foreign domains and to reuse it
in a concrete BI project. The knowledge transfer through domain-independent OLAP
patterns allowed us to consider possible future OLAP requests already at the beginning of
the agriProKnow project, which promoted an early evaluation of the data warehouse design.
However, the definition of these domain-independent OLAP patterns was only possible due to
the extensive know-how from previous BI projects. BI users with rudimentary knowledge are
therefore unlikely to independently define OLAP patterns from scratch. Nevertheless, the BI
domain could benefit from OLAP patterns because they enable knowledge transfer and can
make ad hoc composition of OLAP queries easier and less error-prone. In addition, OLAP

CHAPTER 11. CONCLUSION 131

patterns can also enable the establishment of a standard vocabulary for communicating
types of information needs and their solutions.

The presented pattern-based approach to multidimensional data analysis is based on an
enriched conceptual representation of the data warehouse – the eMDM. Although the
eMDM covers the essential expressiveness to represent the most common data warehouse
designs, it lacks to represent more comprehensive designs, such as one with common
dimension levels. Nevertheless, we could show how the most essential business case in the
dairy industry, milkings, can be represented with it. In addition, the naming approach taken
in the agriProKnow project, where each element of the eMDM had to be uniquely named,
proved to be too rigid, so in this work we relaxed the uniqueness of names to the effect that
only entities, business terms, and value sets need to be uniquely named, while properties
only need to be uniquely named within their entity.

Our pattern-based approach follows a name-based definition approach, i.e., in the course of
defining OLAP patterns, only names and types of expected eMDM elements are defined in
constraints and derivation rules. Thus, no specific elements from a particular eMDM are
referenced. By not referencing specific eMDM elements, OLAP patterns can be applied
to all eMDMs that provide elements that match the defined names and types, i.e., allow
the evaluation of all derivation rules as well as the satisfaction of all constraints. This is
particularly beneficial when domain-independent and domain-specific OLAP patterns are
defined and applied across different organizations. However, this name-based definition
approach also has the disadvantage that only one spelling of the name can be considered
when checking the existing eMDM elements, even if upper and lower case are not considered.
While this can be easily remedied with additional name mappings, it results in extra work
during the application of our pattern-based approach.

The presented approach not only enables knowledge transfer across domain boundaries, but
also the organization of the defined OLAP patterns along different abstraction levels. In
order to make OLAP patterns usable from a higher level of abstraction to lower levels of
abstraction, the OLAP patterns are provided with variables that enable the adaptation of
the OLAP pattern to a concrete context, the eMDM. For this purpose, an instantiation
mechanism has been introduced that allows variables to be bound to concrete names.
However, this instantiation mechanism does not check the actual applicability of the
customized pattern with respect to an eMDM; the applicability check is performed in a
separate step. In this way, domain-independent patterns can be defined without necessarily
requiring a reference eMDM, but it is also possible to obtain instantiated patterns that are
not necessarily applicable. It should be noted that no mechanism is provided to extend
certain OLAP pattern definitions with additional variables, i.e., an extension always requires

CHAPTER 11. CONCLUSION 132

redefinition of the pattern.

A fully instantiated pattern can be executed in the context of an associated eMDM if,
and only if, all derivation rules can be evaluated and all constraints can be satisfied by
corresponding eMDM elements. Thus, each OLAP pattern defines a contract that describes
the conditions that must be satisfied in order to apply the pattern. This prevents a pattern
user from receiving an OLAP query that cannot be executed if the contract conditions are
not met. However, to run an applicable OLAP pattern, the pattern user must currently
ensure that the data warehouse system is implemented as a star schema and that the names
of the fact and dimension tables or their columns match the names used in eMDM. If name
discrepancies still exist, an appropriate name mapping must be specified. This drawback
could be addressed by considering conceptual representations that reflect the actual data
stored.

We evaluated our pattern-based approach as a domain-specific language from a language
developer’s perspective by applying the FQAD [91]. The goal of this evaluation is to
assess whether the specified language is fully and consistently specified in terms of the
necessary functionality for using our pattern-based approach. We were able to show that the
pattern-based approach meets the goal, but since only the language developer’s perspective
was taken, some quality attributes irrelevant to this perspective were not considered. In
particular, usability, which is important from the perspective of other stakeholders, was
currently not sufficiently considered.

Finally, the feasibility of our pattern-based approach to multidimensional data analysis
was demonstrated by its application in the agriProKnow project and by the prototype
implementation described in this thesis. The prototype allows defining eMDMs and OLAP
patterns and organizing them into multidimensional models, vocabularies and catalogs.
However, the prototype provides only a textual interface that does not use the notation
presented.

11.3 Future Work

Future work will investigate the usability of the introduced notation. For this purpose, the
currently text-based editor application of the prototype has to be extended by a visualization
component that displays eMDMs and OLAP patterns according to the introduced notation.
In addition, the pattern-based approach can be further extended to support composite
types for and optionality of variables, the definition of generic business terms, and the
comprehensive description of sets of values. In addition, future work could address how to
easily extend the expressive power of the pattern-based approach. In particular, multi-level
modeling approaches can be pursued to increase the expressive power of eMDM as needed

CHAPTER 11. CONCLUSION 133

to support richer conceptual data warehouse models. In this case, multi-level modeling
approaches would also need to be used for patterns to address the potential new constraints
associated with them. Finally, future work will also explore the application of the pattern
approach with other target languages, e.g., defining patterns for the statistical programming
language R or Multidimensional eXpressions (MDX); the possibility of expressing OLAP
patterns for target languages other than SQL has already been demonstrated in the context
of Linked Open Data using SPARQL as the target language [16].

Bibliography

[1] I. Kovacic, C. G. Schuetz, S. Schausberger, R. Sumereder and M. Schrefl, ‘Guided
Query Composition with Semantic OLAP Patterns,’ in Proceedings of the Workshops
of the EDBT/ICDT 2018 Joint Conference (EDBT/ICDT 2018), Vienna, Austria,
March 26, 2018, N. Augsten, Ed., ser. CEUR Workshop Proceedings, vol. 2083,
CEUR-WS.org, 2018, pp. 67–74.

[2] C. G. Schuetz, S. Schausberger, I. Kovacic and M. Schrefl, ‘Semantic OLAP Patterns:
Elements of Reusable Business Analytics,’ in On the Move to Meaningful Internet
Systems. OTM 2017 Conferences - Confederated International Conferences: CoopIS,
C&TC, and ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part
II, H. Panetto, C. Debruyne, W. Gaaloul et al., Eds., ser. Lecture Notes in Computer
Science, vol. 10574, Springer, 2017, pp. 318–336. doi: 10.1007/978-3-319-69459-
7_22.

[3] G. Allen and J. Parsons, ‘Is Query Reuse Potentially Harmful? Anchoring and Adjust-
ment in Adapting Existing Database Queries,’ Information Systems Research, vol. 21,
no. 1, pp. 56–77, Mar. 2010, issn: 1047-7047. doi: 10.1287/isre.1080.0189.

[4] C. G. Schuetz, S. Schausberger and M. Schrefl, ‘Building an active semantic data
warehouse for precision dairy farming,’ J. Org. Computing and E. Commerce, vol. 28,
no. 2, pp. 122–141, 2018. doi: 10.1080/10919392.2018.1444344.

[5] T. Neuböck, B. Neumayr, M. Schrefl and C. G. Schütz, ‘Ontology-driven business
intelligence for comparative data analysis,’ in eBISS 2013, E. Zimányi, Ed., ser. LNBIP,
vol. 172, Springer, 2014, pp. 77–120. doi: 10.1007/978-3-319-05461-2_3.

[6] C. G. Schuetz, B. Neumayr, M. Schrefl and T. Neuböck, ‘Reference Modeling for Data
Analysis: The BIRD Approach,’ International Journal of Cooperative Information

134

https://doi.org/10.1007/978-3-319-69459-7_22
https://doi.org/10.1007/978-3-319-69459-7_22
https://doi.org/10.1287/isre.1080.0189
https://doi.org/10.1080/10919392.2018.1444344
https://doi.org/10.1007/978-3-319-05461-2_3

BIBLIOGRAPHY 135

Systems, vol. 25, no. 02, pp. 1–46, Jun. 2016, issn: 0218-8430. doi: 10.1142/
S0218843016500064.

[7] C. G. Schuetz and M. Schrefl, ‘Customization of domain-specific reference models for
data warehouses,’ in Proceedings of the 18th IEEE International Enterprise Distributed
Object Computing Conference, M. Reichert, S. Rinderle-Ma and G. Grossmann, Eds.,
2014, pp. 61–70. doi: 10.1109/EDOC.2014.18.

[8] T. Neuböck and M. Schrefl, ‘Modelling Knowledge about Data Analysis Processes in
Manufacturing,’ IFAC-PapersOnLine, vol. 48, no. 3, pp. 277–282, 2015, 15th IFAC
Symposium on Information Control Problems in Manufacturing, issn: 2405-8963.
doi: 10.1016/j.ifacol.2015.06.094.

[9] D. L. Parnas, ‘Precise Documentation: The Key to Better Software,’ in The Future
of Software Engineering, 2010, pp. 125–148. doi: 10.1007/978-3-642-15187-3_8.

[10] B. Renzl, ‘Trust in management and knowledge sharing: The mediating effects of
fear and knowledge documentation,’ Omega, vol. 36, no. 2, pp. 206–220, 2008, issn:
0305-0483. doi: 10.1016/j.omega.2006.06.005.

[11] M. Fowler, Analysis patterns - reusable object models, ser. Addison-Wesley series in
object-oriented software engineering. Addison-Wesley-Longman, 1997, isbn: 978-0-
201-89542-1.

[12] C. Alexander, The Timeless Way of Building. Oxford University Press, 1979, isbn:
978-0-19-502402-9.

[13] E. Gamma, R. Helm, R. E. Johnson and J. M. Vlissides, ‘Design patterns: Abstraction
and reuse of object-oriented design,’ in ECOOP’93 - Object-Oriented Programming,
7th European Conference, Kaiserslautern, Germany, July 26-30, 1993, Proceedings,
O. Nierstrasz, Ed., ser. Lecture Notes in Computer Science, vol. 707, Springer, 1993,
pp. 406–431. doi: 10.1007/3-540-47910-4_21.

[14] S. Nalchigar and E. S. K. Yu, ‘Business-driven data analytics: A conceptual modeling
framework,’ Data Knowl. Eng., vol. 117, pp. 359–372, 2018. doi: 10.1016/j.datak.
2018.04.006.

[15] S. Nalchigar, E. S. K. Yu, Y. Obeidi, S. Carbajales, J. Green and A. Chan, ‘Solution
Patterns for Machine Learning,’ in Advanced Information Systems Engineering - 31st
International Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings,
P. Giorgini and B. Weber, Eds., ser. LNCS, vol. 11483, Springer, 2019, pp. 627–642.
doi: 10.1007/978-3-030-21290-2_39.

https://doi.org/10.1142/S0218843016500064
https://doi.org/10.1142/S0218843016500064
https://doi.org/10.1109/EDOC.2014.18
https://doi.org/10.1016/j.ifacol.2015.06.094
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1016/j.omega.2006.06.005
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1016/j.datak.2018.04.006
https://doi.org/10.1016/j.datak.2018.04.006
https://doi.org/10.1007/978-3-030-21290-2_39

BIBLIOGRAPHY 136

[16] M. Hilal, C. G. Schuetz and M. Schrefl, ‘Using superimposed multidimensional
schemas and OLAP patterns for RDF data analysis,’ Open Computer Science, vol. 8,
no. 1, pp. 18–37, 2018. doi: 10.1515/comp-2018-0003.

[17] W. W. Eckerson, ‘The Keys to Enterprise Business Intelligence: Critical Success
Factors,’ TDWI Best Practices Report, 2005.

[18] J. Varga, E. Dobrokhotova, O. Romero, T. B. Pedersen and C. Thomsen, ‘SM4MQ:
A semantic model for multidimensional queries,’ in The Semantic Web - 14th In-
ternational Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017,
Proceedings, Part I, E. Blomqvist, D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler
and O. Hartig, Eds., ser. Lecture Notes in Computer Science, vol. 10249, 2017,
pp. 449–464. doi: 10.1007/978-3-319-58068-5_28.

[19] D. Hay, K. A. Healy, J. Hall et al., ‘Defining Business Rules: What Are They Really?’
Business Rules Group, Tech. Rep., Jul. 2000.

[20] C. Kohls, ‘The Theories of Design Patterns and their Practical Implications exemplified
for E-Learning Patterns,’ Ph.D. dissertation, Catholic University Eichstätt-Ingolstadt,
2014.

[21] C. Caracciolo, A. Stellato, A. Morshed et al., ‘The AGROVOC linked dataset,’
Semantic Web, vol. 4, no. 3, pp. 341–348, 2013. doi: 10.3233/SW-130106.

[22] K. Donnelly, ‘SNOMED-CT: The advanced terminology and coding system for
ehealth,’ Studies in health technology and informatics, vol. 121, p. 279, 2006.

[23] S. Anderlik, B. Neumayr and M. Schrefl, ‘Using domain ontologies as semantic
dimensions in data warehouses,’ in ER 2012, P. Atzeni, D. W. Cheung and S. Ram,
Eds., ser. LNCS, vol. 7532, Springer, 2012, pp. 88–101. doi: 10.1007/978-3-642-
34002-4_7.

[24] J. Bewley, ‘Precision dairy farming: Advanced analysis solutions for future profitability,’
in Proceedings of the first North American conference on precision dairy management,
2010, pp. 2–5.

[25] M. Golfarelli, D. Maio and S. Rizzi, ‘The Dimensional Fact Model: A Conceptual
Model for Data Warehouses,’ Int. J. Cooperative Inf. Syst., vol. 7, no. 2-3, pp. 215–
247, 1998. doi: 10.1142/S0218843098000118.

[26] P. P.-S. Chen, ‘The Entity-Relationship Model—toward a Unified View of Data,’
ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976, issn: 0362-5915. doi:
10.1145/320434.320440.

[27] W. W. Eckerson, ‘Pervasive Business Intelligence: Techniques and Technologies to
Deploy BI on an Enterprise Scale,’ TDWI Best Practices Report, 2008.

https://doi.org/10.1515/comp-2018-0003
https://doi.org/10.1007/978-3-319-58068-5_28
https://doi.org/10.3233/SW-130106
https://doi.org/10.1007/978-3-642-34002-4_7
https://doi.org/10.1007/978-3-642-34002-4_7
https://doi.org/10.1142/S0218843098000118
https://doi.org/10.1145/320434.320440

BIBLIOGRAPHY 137

[28] B. Meyer, ‘Applying "design by contract",’ Computer, vol. 25, no. 10, pp. 40–51,
1992. doi: 10.1109/2.161279.

[29] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S. Angel,
A Pattern Language - Towns, Buildings, Construction. Oxford University Press, 1977,
isbn: 978-0-19-501919-3.

[30] K. Beck and W. Cunningham, ‘A laboratory for teaching object oriented thinking,’
in Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, ser. OOPSLA ’89, New Orleans, Louisiana, USA: Association for
Computing Machinery, 1989, pp. 1–6, isbn: 0897913337. doi: 10.1145/74877.74879.

[31] P. Coad, ‘Object-oriented patterns,’ Commun. ACM, vol. 35, no. 9, pp. 152–159,
1992. doi: 10.1145/130994.131006.

[32] R. E. Johnson, ‘Frameworks = (components + patterns),’ Commun. ACM, vol. 40,
no. 10, pp. 39–42, 1997. doi: 10.1145/262793.262799.

[33] J. O. Coplien, Software Patterns. SIGS Management Briefings Series, 1996.

[34] J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile Software Develop-
ment. USA: Prentice-Hall, Inc., 2004, isbn: 0131467409.

[35] M. E. Conway, ‘How do committees invent,’ Datamation, vol. 14, no. 4, pp. 28–31,
1968.

[36] J. O. Coplien, ‘Organizational patterns,’ in Enterprise Information Systems VI, I.
Seruca, J. Cordeiro, S. Hammoudi and J. Filipe, Eds., Dordrecht: Springer Netherlands,
2006, pp. 43–52, isbn: 978-1-4020-3675-0.

[37] O. Muller and B. Haberman, ‘Supporting abstraction processes in problem solving
through pattern-oriented instruction,’ Computer Science Education, vol. 18, no. 3,
pp. 187–212, 2008. doi: 10.1080/08993400802332548.

[38] I. Graham, Business Rules Management and Service Oriented Architecture: A Pattern
Language. Wiley, 2007, isbn: 9780470059807.

[39] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros,
‘Workflow patterns,’ Distributed Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.
doi: 10.1023/A:1022883727209.

[40] D. C. Hay, Data Model Patterns: Conventions of Thought. Dorset House, 1996, isbn:
9780932633293.

[41] L. Silverston, The Data Model Resource Book, A Library of Universal Data Models
by Industry Types. John Wiley & Sons, Mar. 2001, vol. 2, isbn: 0471353485.

https://doi.org/10.1109/2.161279
https://doi.org/10.1145/74877.74879
https://doi.org/10.1145/130994.131006
https://doi.org/10.1145/262793.262799
https://doi.org/10.1080/08993400802332548
https://doi.org/10.1023/A:1022883727209

BIBLIOGRAPHY 138

[42] L. Silverston and P. Agnew, The Data Model Resource Book, Universal Patterns for
Data Modeling. John Wiley & Sons, Dec. 2008, vol. 3, isbn: 0470178450.

[43] M. Blaha, Patterns of Data Modeling, 1st. USA: CRC Press, Inc., 2010, isbn:
1439819890.

[44] J. Arlow and I. Neustadt, Enterprise patterns and MDA: building better software with
archetype patterns and UML. Addison-Wesley Professional, 2004.

[45] D. Batra, ‘Conceptual data modeling patterns: Representation and validation,’ J.
Database Manag., vol. 16, no. 2, pp. 84–106, 2005. doi: 10.4018/jdm.2005040105.

[46] L. Silverston, The Data Model Resource Book, A Library of Universal Data Models
for All Enterprises, R. M. Elliott, Ed. John Wiley & Sons, Apr. 2001, vol. 1, isbn:
0-471-38023-7.

[47] D. Hay, Data Model Patterns: A Metadata Map, ser. The Morgan Kaufmann Series
in Data Management Systems. Elsevier Science, 2010, isbn: 9780080477039.

[48] W. H. Inmon, Building the Data Warehouse, Fourth Edition. John Wiley & Sons,
Inc, Sep. 2005.

[49] A. A. Vaisman and E. Zimányi, Data Warehouse Systems - Design and Implementation,
ser. Data-Centric Systems and Applications. Springer, 2014, isbn: 978-3-642-54654-9.
doi: 10.1007/978-3-642-54655-6.

[50] S. Schneider and D. Frosch-Wilke, ‘Analysis patterns in dimensional data modeling,’
in Data Engineering and Management, R. Kannan and F. Andres, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 109–116, isbn: 978-3-642-27872-3.

[51] O. R. Zaïane, M. Xin and J. Han, ‘Discovering web access patterns and trends by
applying OLAP and data mining technology on web logs,’ in Proceedings of the IEEE
Forum on Reasearch and Technology Advances in Digital Libraries, IEEE ADL ’98,
Santa Barbara, California, USA, April 22-24, 1998, IEEE Computer Society, 1998,
pp. 19–29. doi: 10.1109/ADL.1998.670376.

[52] K. Boulil, F. L. Ber, S. Bimonte, C. Grac and F. Cernesson, ‘Multidimensional modeling
and analysis of large and complex watercourse data: An olap-based solution,’ Ecol.
Informatics, vol. 24, pp. 90–106, 2014. doi: 10.1016/j.ecoinf.2014.07.001.

[53] P. Viqarunnisa, H. Laksmiwati and F. N. Azizah, ‘Generic Data Model Pattern for Data
Warehouse,’ in International Conference on Electrical Engineering and Informatics,
ICEEI 2011, Bandung, Indonesia, 17-19 July, 2011, A. Syaichu-Rohman, D. Hamdani,
S. Akbar, W. Adiprawita, R. Razali and N. Sahari, Eds., IEEE, 2011, pp. 1–8. doi:
10.1109/ICEEI.2011.6021805.

https://doi.org/10.4018/jdm.2005040105
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1109/ADL.1998.670376
https://doi.org/10.1016/j.ecoinf.2014.07.001
https://doi.org/10.1109/ICEEI.2011.6021805

BIBLIOGRAPHY 139

[54] L. Corr and J. Stagnitto, Agile Data Warehouse Design: Collaborative Dimensional
Modeling, from Whiteboard to Star Schema. Leeds, UK: DecisionOne Press, Nov.
2014, vol. 4, isbn: 0956817203.

[55] M. E. Jones and I. Song, ‘Dimensional modeling: Identification, classification, and
evaluation of patterns,’ Decis. Support Syst., vol. 45, no. 1, pp. 59–76, 2008. doi:
10.1016/j.dss.2006.12.004.

[56] J. Poole, D. Chang, D. Tolbert and D. Mellor, Common Warehouse Metamodel
Developer’s Guide. Wiley Publishing, Inc., 2003, isbn: 0-471-20243-6.

[57] B. Zohuri and M. Moghaddam, ‘What Is Data Analysis from Data Warehousing
Perspective?’ In Business Resilience System (BRS): Driven Through Boolean, Fuzzy
Logics and Cloud Computation: Real and Near Real Time Analysis and Decision
Making System. Springer International Publishing, 2017, pp. 269–289, isbn: 978-3-
319-53417-6. doi: 10.1007/978-3-319-53417-6_10.

[58] L. Greiner. ‘What is Data Analysis and Data Mining? - Database Trends and Ap-
plications.’ (2011), [Online]. Available: https://www.dbta.com/Editorial/Trends-
and-Applications/What-is-Data-Analysis-and-Data-Mining-73503.aspx (visited on
19/01/2021).

[59] V. Tropashko and D. Burleson, SQL Design Patterns: Expert Guide to SQL Program-
ming. Rampant TechPress, 2007, isbn: 0977671542.

[60] H. Al-Shuaily, ‘SQL Pattern Design, Development & Evaluation of its Efficacy,’ Ph.D.
dissertation, University of Glasgow, 2013.

[61] K. Renaud and J. van Biljon, ‘Teaching SQL - which pedagogical horse for this course?’
In Key Technologies for Data Management, 21st British National Conference on
Databases, BNCOD 21, Edinburgh, UK, July 7-9, 2004, Proceedings, M. H. Williams
and L. M. MacKinnon, Eds., ser. Lecture Notes in Computer Science, vol. 3112,
Springer, 2004, pp. 244–256. doi: 10.1007/978-3-540-27811-5_22.

[62] L. Sundin and Q. I. Cutts, ‘Is it feasible to teach query programming in three different
languages in a single session?: A study on a pattern-oriented tutorial and cheat sheets,’
in Proceedings of the 1st UK & Ireland Computing Education Research Conference,
UKICER 2019, Canterbury, UK, September 5-6, 2019, J. Carter, B. A. Becker and
N. C. C. Brown, Eds., ACM, 2019, 7:1–7:7. doi: 10.1145/3351287.3351293.

[63] C. Nagy and A. Cleve, ‘Mining stack overflow for discovering error patterns in
SQL queries,’ in 2015 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015, R.
Koschke, J. Krinke and M. P. Robillard, Eds., IEEE Computer Society, 2015, pp. 516–
520. doi: 10.1109/ICSM.2015.7332505.

https://doi.org/10.1016/j.dss.2006.12.004
https://doi.org/10.1007/978-3-319-53417-6_10
https://www.dbta.com/Editorial/Trends-and-Applications/What-is-Data-Analysis-and-Data-Mining-73503.aspx
https://www.dbta.com/Editorial/Trends-and-Applications/What-is-Data-Analysis-and-Data-Mining-73503.aspx
https://doi.org/10.1007/978-3-540-27811-5_22
https://doi.org/10.1145/3351287.3351293
https://doi.org/10.1109/ICSM.2015.7332505

BIBLIOGRAPHY 140

[64] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Programming, 1st.
Pragmatic Bookshelf, 2010, isbn: 1934356557.

[65] P. Dintyala, A. Narechania and J. Arulraj, ‘Sqlcheck: Automated detection and
diagnosis of SQL anti-patterns,’ in Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini
and H. Q. Ngo, Eds., ACM, 2020, pp. 2331–2345. doi: 10.1145/3318464.3389754.

[66] M. Poess, B. Smith, L. Kollar and P. Larson, ‘Tpc-ds, taking decision support bench-
marking to the next level,’ in Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’02, Madison, Wisconsin: As-
sociation for Computing Machinery, 2002, pp. 582–587, isbn: 1581134975. doi:
10.1145/564691.564759.

[67] M. Poess and J. M. Stephens, ‘Generating thousand benchmark queries in seconds,’
in (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004, Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento,
M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley and K. B. Schiefer, Eds.,
Morgan Kaufmann, 2004, pp. 1045–1053. doi: 10.1016/B978-012088469-8.50091-7.
[Online]. Available: http://www.vldb.org/conf/2004/IND2P3.PDF.

[68] A. Giacometti, P. Marcel, E. Negre and A. Soulet, ‘Query Recommendations for OLAP
Discovery Driven Analysis,’ in DOLAP 2009, ACM 12th International Workshop on
Data Warehousing and OLAP, Hong Kong, China, November 6, 2009, Proceedings, I.
Song and E. Zimányi, Eds., ACM, 2009, pp. 81–88. doi: 10.1145/1651291.1651306.

[69] C. Sapia, ‘On Modeling and Predicting Query Behavior in OLAP Systems,’ in
Proceedings of the Intl. Workshop on Design and Management of Data Warehouses,
DMDW’99, Heidelberg, Germany, June 14-15, 1999, S. Gatziu, M. A. Jeusfeld, M.
Staudt and Y. Vassiliou, Eds., ser. CEUR Workshop Proceedings, vol. 19, CEUR-
WS.org, 1999, p. 2. [Online]. Available: http://ceur-ws.org/Vol-19/paper2.pdf.

[70] A. Unwin, ‘Patterns of Data Analysis,’ Journal of the Korean Statistical Society,
vol. 30, no. 2, pp. 219–230, 2001.

[71] P. Law, R. C. Basole and Y. Wu, ‘Duet: Helping data analysis novices conduct
pairwise comparisons by minimal specification,’ IEEE Trans. Vis. Comput. Graph.,
vol. 25, no. 1, pp. 427–437, 2019. doi: 10.1109/TVCG.2018.2864526.

[72] P.-M. Law, S. Das and R. C. Basole, ‘Comparing Apples and Oranges: Taxonomy and
Design of Pairwise Comparisons within Tabular Data,’ in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’19, Glasgow, Scotland
Uk: Association for Computing Machinery, 2019. doi: 10.1145/3290605.3300409.

https://doi.org/10.1145/3318464.3389754
https://doi.org/10.1145/564691.564759
https://doi.org/10.1016/B978-012088469-8.50091-7
http://www.vldb.org/conf/2004/IND2P3.PDF
https://doi.org/10.1145/1651291.1651306
http://ceur-ws.org/Vol-19/paper2.pdf
https://doi.org/10.1109/TVCG.2018.2864526
https://doi.org/10.1145/3290605.3300409

BIBLIOGRAPHY 141

[73] C. Stolte, D. Tang and P. Hanrahan, ‘Polaris: A system for query, analysis, and
visualization of multidimensional relational databases,’ IEEE Trans. Vis. Comput.
Graph., vol. 8, no. 1, pp. 52–65, 2002. doi: 10.1109/2945.981851.

[74] M. Böhnlein, ‘Konstruktion semantischer Data-Warehouse-Schemata,’ in Konstruktion
semantischer Data Warehouse-Strukturen auf Grundlage von Geschäftsprozeßmodel-
len, Deutscher Universitätsverlag, 2001, ch. 5, pp. 303–376, isbn: 978-3-663-08649-9.
doi: 10.1007/978-3-663-08649-9_6.

[75] M. Böhnlein, A. Ulbrich-vom Ende and M. Plaha, ‘Visual specification of multi-
dimensional queries based on a semantic data model,’ in Vom Data Warehouse
zum Corporate Knowledge Center, E. von Maur and R. Winter, Eds., Heidelberg:
Physica-Verlag HD, 2002, pp. 379–397, isbn: 978-3-642-57491-7.

[76] J. Danaparamita and W. Gatterbauer, ‘Queryviz: Helping users understand SQL
queries and their patterns,’ in EDBT 2011, 14th International Conference on Extending
Database Technology, Uppsala, Sweden, March 21-24, 2011, Proceedings, A. Ailamaki,
S. Amer-Yahia, J. M. Patel, T. Risch, P. Senellart and J. Stoyanovich, Eds., ACM,
2011, pp. 558–561. doi: 10.1145/1951365.1951440.

[77] A. Leventidis, J. Zhang, C. Dunne, W. Gatterbauer, H. V. Jagadish and M. Riedewald,
‘Queryvis: Logic-based diagrams help users understand complicated SQL queries
faster,’ in Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020,
D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini and H. Q. Ngo, Eds., ACM,
2020, pp. 2303–2318. doi: 10.1145/3318464.3389767.

[78] J. Pardillo, J. Mazón and J. Trujillo, ‘Extending OCL for OLAP querying on conceptual
multidimensional models of data warehouses,’ Inf. Sci., vol. 180, no. 5, pp. 584–601,
2010. doi: 10.1016/j.ins.2009.11.006.

[79] J. Cabot, J. Mazón, J. Pardillo and J. Trujillo, ‘Specifying aggregation functions
in multidimensional models with OCL,’ in Conceptual Modeling - ER 2010, 29th
International Conference on Conceptual Modeling, Vancouver, BC, Canada, November
1-4, 2010. Proceedings, J. Parsons, M. Saeki, P. Shoval, C. C. Woo and Y. Wand,
Eds., ser. Lecture Notes in Computer Science, vol. 6412, Springer, 2010, pp. 419–432.
doi: 10.1007/978-3-642-16373-9_30.

[80] Object Management Group, Specifications: Model Driven Architecture (MDA), 2011.
[Online]. Available: https://www.omg.org/mda (visited on 21/01/2021).

[81] E. Malinowski and E. Zimányi, ‘Hierarchies in a multidimensional model: From
conceptual modeling to logical representation,’ Data & Knowledge Engineering,
vol. 59, no. 2, pp. 348–377, 2006. doi: 10.1016/j.datak.2005.08.003.

https://doi.org/10.1109/2945.981851
https://doi.org/10.1007/978-3-663-08649-9_6
https://doi.org/10.1145/1951365.1951440
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1016/j.ins.2009.11.006
https://doi.org/10.1007/978-3-642-16373-9_30
https://www.omg.org/mda
https://doi.org/10.1016/j.datak.2005.08.003

BIBLIOGRAPHY 142

[82] J. H. Larkin and H. A. Simon, ‘Why a diagram is (sometimes) worth ten thousand
words,’ Cogn. Sci., vol. 11, no. 1, pp. 65–100, 1987. doi: 10.1111/j.1551-6708.1987.
tb00863.x.

[83] D. Moody, ‘The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering,’ IEEE Transactions on Software Engineering,
vol. 35, no. 6, pp. 756–779, Nov. 2009, issn: 2326-3881. doi: 10.1109/TSE.2009.67.

[84] J. Mazón and J. Trujillo, ‘An MDA approach for the development of data warehouses,’
in XIV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2009), San
Sebastián, Spain, September 8-11, 2009, A. Vallecillo and G. Sagardui, Eds., 2009,
pp. 208–208.

[85] Zentralverband Elektrotechnik- und Elektronikindustrie (ZVEI), ZVEI-Kennzahlensystem:
ein Instrument zur Unternehmenssteuerung, 4th. 1989, list of key performance indic-
ators proposed by the German Association of Electrical and Electronic Manufacturers.

[86] A. P. C. Chan and A. P. L. Chan, ‘Key performance indicators for measuring construc-
tion success,’ Benchmarking: an international journal, vol. 11, no. 2, pp. 203–221,
2004. doi: 10.1108/14635770410532624.

[87] W. Leiderer, Kennzahlen zur Steuerung von Hotel- und Gaststättenbetrieben, 2nd.
Matthaes, Stuttgart, 1983, list of key performance indicators for hotels and food &
beverage companies.

[88] M. Moritz, ‘Prototype of a Tool for Managing and Executing OLAP Patterns,’ M.S.
thesis, Johannes Kepler University Linz, Nov. 2020.

[89] S. Schausberger, ‘The Semantic Data Warehouse for the AgriProKnow Project: A
First Prototype,’ M.S. thesis, Johannes Kepler University Linz, Nov. 2016.

[90] J. Arnoldus, M. G. J. van den Brand, A. Serebrenik and J. Brunekreef, Code Generation
with Templates, ser. Atlantis Studies in Computing. Atlantis Press, 2012, vol. 1, isbn:
978-94-91216-55-8. doi: 10.2991/978-94-91216-56-5.

[91] G. Kahraman and S. Bilgen, ‘A Framework for Qualitative Assessment of Domain-
specific Languages,’ Softw. Syst. Model., vol. 14, no. 4, pp. 1505–1526, Oct. 2015,
issn: 1619-1366. doi: 10.1007/s10270-013-0387-8.

[92] R. F. Paige, J. S. Ostroff and P. J. Brooke, ‘Principles for modeling language design,’
Inf. Softw. Technol., vol. 42, no. 10, pp. 665–675, 2000. doi: 10.1016/S0950-
5849(00)00109-9.

[93] J. Krogstie, ‘Evaluating UML Using a Generic Quality Framework,’ in UML and the
Unified Process, IGI Global, Jan. 2003, pp. 1–22. doi: 10.4018/978-1-93177-744-
5.ch001.

https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1108/14635770410532624
https://doi.org/10.2991/978-94-91216-56-5
https://doi.org/10.1007/s10270-013-0387-8
https://doi.org/10.1016/S0950-5849(00)00109-9
https://doi.org/10.1016/S0950-5849(00)00109-9
https://doi.org/10.4018/978-1-93177-744-5.ch001
https://doi.org/10.4018/978-1-93177-744-5.ch001

BIBLIOGRAPHY 143

[94] S. Kelly and R. Pohjonen, ‘Worst practices for domain-specific modeling,’ IEEE
Software, vol. 26, no. 4, pp. 22–29, 2009. doi: 10.1109/MS.2009.109.

[95] G. Viswanathan and M. Schneider, ‘CAL: A generic query and analysis language for
data warehouses,’ in ISCA 20th International Conference on Software Engineering
and Data Engineering (SEDE-2011) June 20-22, 2011, Imperial Palace Hotel, Las
Vegas, Nevada USA, R. Zalila-Wenkstern and W. Wu, Eds., ISCA, 2011, pp. 18–23.

[96] L. I. Gómez, S. A. Gómez and A. A. Vaisman, ‘A generic data model and query lan-
guage for spatiotemporal olap cube analysis,’ in Proceedings of the 15th International
Conference on Extending Database Technology, ser. EDBT ’12, Berlin, Germany:
Association for Computing Machinery, 2012, pp. 300–311, isbn: 9781450307901.
doi: 10.1145/2247596.2247632.

https://doi.org/10.1109/MS.2009.109
https://doi.org/10.1145/2247596.2247632

List of Figures

2.1 Venn diagram of the roles of the pattern-based approach to multidimensional
data analysis . 10

2.2 General steps of a pattern author in the pattern definition process 11
2.3 General steps of a pattern user in the pattern usage process 12
2.4 The milking cube of the multidimensional model of the Happy Milk data

warehouse system . 14
2.5 Breed-specific subset-subset comparison pattern’s aliases, problem, and context 15
2.6 Breed-specific subset-subset comparison pattern with its solution and a template

(continued from Figure 2.5) . 16

4.1 Sets of model elements introduced in Definition 2 (except sets of unary and
binary business terms) . 41

4.2 Multidimensional model notation . 49
4.3 Business term notation . 50
4.4 Happy Milk’s enriched multidimensional model (potential valid business term

applications are indicated by dashed grey arrows, representing the binding of
the corresponding context parameter by the entity name pointed to) 52

5.1 Pattern notation . 60
5.2 Illustration of the Context section of breed-specific subset-subset comparison

from Figure 2.5 . 60
5.3 Notation for the context of patterns . 61

7.1 Exemplified organization of OLAP patterns and elements of an eMDM along
levels of abstraction. Patterns from the same or a more specific abstraction
level are obtained through (partial) instantiation. 74

144

LIST OF FIGURES 145

7.2 Aliases, problem, solution, and context of the level-specific subset-subset com-
parison pattern . 78

7.3 A template and related patterns for level-specific subset-subset comparison
(continued from Figure 7.2) . 79

7.4 Exemplified organization of OLAP patterns and elements of an eMDM into
catalogs, vocabularies, and multidimensional models along levels of abstraction. 87

8.1 System architecture, showing the relationships between the major components
and its subcomponents. 89

8.2 Command line interface provided by the Editor application exemplified. 100

B.1 Aliases, problem, solution, context, and related patterns of the non-comparative
pattern . 162

B.2 A template and an example for non-comparative pattern (continued from
Figure B.1) . 163

B.3 Example for non-comparative pattern (continued from Figure B.2) 164
B.4 Example for non-comparative pattern (continued from Figure B.3) 165
B.5 Aliases, problem, solution, and context of the homogeneous subset-baseset

comparison pattern . 167
B.6 A template and related patterns for subset-baseset comparison (continued from

Figure B.5) . 168
B.7 Example for subset-baseset comparison (continued from Figure B.6) 169
B.8 Example for subset-baseset comparison (continued from Figure B.7) 170
B.9 Example for subset-baseset comparison (continued from Figure B.8) 171
B.10 Aliases, problem, solution, and context of the homogeneous subset-complement

comparison . 173
B.11 A template and related patterns for subset-complement comparison (continued

from Figure B.10) . 174
B.12 Example for subset-complement comparison (continued from Figure B.11) . . . 175
B.13 Example for subset-complement comparison (continued from Figure B.12) . . . 176
B.14 Example for subset-complement comparison (continued from Figure B.13) . . . 177
B.15 Aliases, problem, solution, and context of the homogeneous subset-subset

comparison . 179
B.16 A template and related patterns for homogeneous subset-subset comparison

(continued from Figure B.15) . 180
B.17 Example for homogeneous subset-subset comparison (continued from Figure B.16)181
B.18 Example for homogeneous subset-subset comparison (continued from Figure B.17)182
B.19 Example for homogeneous subset-subset comparison (continued from Figure B.18)183

LIST OF FIGURES 146

B.20 Aliases, problem, and solution of the heterogeneous subset-subset comparison
pattern . 184

B.21 Context and a template for heterogeneous subset-subset comparison (continued
from Figure B.20) . 185

B.22 Related patterns and an example for heterogeneous subset-subset comparison
(continued from Figure B.21) . 186

B.23 Example for heterogeneous subset-subset comparison (continued from Figure B.22)187
B.24 Example for heterogeneous subset-subset comparison (continued from Figure B.23)188

C.1 Aliases, problem, solution, and context of the breed-specific subset-subset
comparison pattern . 190

C.2 A template and related patterns for breed-specific subset-subset comparison
(continued from Figure C.1) . 191

C.3 Example for breed-specific subset-subset comparison (continued from Figure C.2)192
C.4 Example for breed-specific subset-subset comparison (continued from Figure C.3)193
C.5 Example for breed-specific subset-subset comparison (continued from Figure C.4)194

List of Tables

2.1 Basic macros for pattern templates . 19

9.1 Evaluation of the OLAP pattern approach according to the FQAD [91] 108
9.2 Evaluation of the OLAP pattern approach according to the FQAD [91] (continued

from Table 9.1) . 109

10.1 Second level macros for handling composite variables in templates 121
10.2 Second-level macro for handling optional variables in templates 124

147

List of Listings

2.1 Instantiation of the breed-specific subset-subset comparison in Figure 2.5 . 20
2.2 Executable OLAP query resulting from the instantiation of the breed-specific

subset-subset comparison . 22
4.1 Definition of Happy Milk’s Milking cube 42
4.2 Definition of Happy Milk’s Animal dimension 42
4.3 Definition of Average Milk Yield business term 45
4.4 Description and template definition of Average Milk Yield buiness term . . 45
6.1 Derivation rules, local cubes, and constraints of dairy- and breed-specific

subset-subset comparison as a result of instantiation in Listing 2.1 63
6.2 Derivation rules and constraints of grounded dairy- and breed-specific subset-

subset comparison as a result of grounding in Listing 6.4 66
6.3 Grounded template for grounded dairy- and breed-specific subset-subset

comparison . 67
6.4 Grounding of the dairy- and breed-specific subset-subset comparison 68
6.5 Execution of the grounded and applicable dairy- and breed-specific subset-

subset comparison . 70
7.1 Definition of domain-independent dimension Time 75
7.2 Definition of domain-independent unary dimension predicate 2019 77
7.3 Obtaining domain-independent year-specific subset-subset comparison through

partial instantiation of level-specific subset-subset comparison 80
7.4 Obtaining domain-specific breed-specific subset-subset comparison through

partial instantiation of level-specific subset-subset comparison 81
7.5 Definition of domain-specific unary dimension predicate Holstein 81
7.6 Obtaining organization-specific subset-subset comparison of Farm Site 1

through partial instantiation of farm-specific subset-subset comparison . . . 83
7.7 Definition of organization-specific unary dimension predicate Farm Site 1 . 84

148

LIST OF TABLES 149

8.1 Definition of the Happy Milk company’s organization structure 101
8.2 Statement to define dimension Lactation for the multidimensional model

Happy Milk MDM. 101
8.3 Statement to inspect dimension Lactation in the agriProKnow reference

MDM . 102
8.4 Definition of the binary cube predicate Average Milk Yield Ratio added to

the vocabulary Happy Milk Vocabulary . 102
8.5 Definition of the Farm-Specific Subset-Subset Comparison pattern through

instantiation . 103
8.6 Deletion of faulty Farm-Specific Subset-Subset Comparison pattern 103
8.7 Instantiation of the farm-specific subset-subset comparison 104
10.1 Extract from the redefinition of breed-specific subset-subset comparison

using composite type constructors for parameters and derived elements. . . 119
10.2 Extract from a template of the redefined breed-specific subset-subset com-

parison pattern. 121
10.3 Detail of a pattern instantiation with collection variables 122
10.4 Extract from the redefinition of breed-specific subset-subset comparison with

optional parameters. 123
10.5 Extract from a template of the pattern defined in Listing 10.4. 124
10.6 Definition of the generic unary calculated measure Generic Aggregated

Measure with its template for the language SQL in the Oracle 11 dialect . . 126
10.7 Instantiation of the generic business term Generic Aggregated Measure . . . 127
10.8 Definition of the string value set Breed Name 128
10.9 Definition of the number value set Liquid In Liter 128
A.1 Syntax of the types and basic statements of the language 151
A.2 Syntax of the multidimensional model definition statements 152
A.3 Syntax of the business term definition statements 154
A.4 Syntax of the pattern definition statements 156
A.5 Syntax of the pattern usage statements 158
A.6 Syntax of repository organization and search statements 159
D.1 Happy Milk’s repository organization . 196
D.2 Happy Milk’s dimension and cube definitions 196
D.3 Happy Milk’s business term definitions . 198
D.4 Happy Milk’s pattern definitions . 204

Appendix A
ANTLR4 Grammar Definitions

Listing A.1 defines the types and basic statements available in the language, Listing A.2
extends the syntax for defining multidimensional models, Listing A.3 extends the syntax
for defining business terms, Listing A.4 extends the syntax for defining patterns, while
Listing A.5 extends the syntax for using of patterns. It should be noted that these syntax
definitions are extended to include statements necessary for the prototypical implementation.
For this purpose, Listing A.6 extends the syntax for defining organizational elements. In
addition, the syntax definition has been formatted for better readability. For the sake of
clarity and brevity, a cluttered syntax definition is avoided by not detailing trivial grammar
rules in syntax definitions. Instead, we assume that grammar rules ending with _name

represent strings in double quotes without line breaks, grammar rules ending with _txt

represent strings in double quotes with lines breaks, while grammar rules ending with _label

represent strings without double quotes and line breaks. All definitions are case-insensitive.

150

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 151

Listing A.1: Syntax of the types and basic statements of the language
1 ⟨type⟩ :

2 ⟨m_entity_type⟩
3 | ⟨m_prop_type⟩
4 | ⟨t_type⟩
5 | ⟨v_type⟩ ;

6

7 ⟨m_entity_type⟩ :

8 CUBE

9 | DIMENSION ;

10

11 ⟨m_prop_type⟩ :

12 MEASURE

13 | DIMENSION_ROLE

14 | LEVEL

15 | ATTRIBUTE ;

16

17 ⟨t_type⟩ :

18 UNARY_CUBE_PREDICATE

19 | BINARY_CUBE_PREDICATE

20 | CUBE_ORDERING

21 | UNARY_CALCULATED_MEASURE

22 | BINARY_CALCULATED_MEASURE

23 | UNARY_DIMENSION_PREDICATE

24 | BINARY_DIMENSION_PREDICATE

25 | DIMENSION_GROUPING

26 | DIMENSION_ORDERING ;

27

28 ⟨v_type⟩ :

29 NUMBER_VALUE_SET

30 | STRING_VALUE_SET

31 | ⟨val_set_name⟩ ;

32

33 ⟨emdm_stmt⟩ :

34 (

35 (

36 ⟨c_stmt⟩
37 | ⟨d_stmt⟩
38 | ⟨i_stmt⟩
39 | ⟨g_stmt⟩
40 | ⟨x_stmt⟩
41 | ⟨f_stmt⟩
42) ';'

43)* ;

44

45 ⟨c_stmt⟩ :

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 152

46 CREATE (

47 ⟨cp_stmt⟩
48 | ⟨ct_stmt⟩
49 | ⟨cm_stmt⟩
50 | ⟨cr_stmt⟩
51) ;

52

53 ⟨d_stmt⟩ :

54 DELETE (

55 ⟨p_del⟩
56 | ⟨t_del⟩
57 | ⟨m_del⟩
58 | ⟨r_del⟩
59) ;

Listing A.2: Syntax of the multidimensional model definition statements
1 ⟨cm_stmt⟩ :

2 ⟨cube_def⟩
3 | ⟨dim_def⟩ ;

4

5 ⟨cube_def⟩ :

6 CUBE ⟨cube_name⟩ WITH

7 MEASURE PROPERTIES

8 ⟨meas_decl⟩+
9 END MEASURE PROPERTIES ';'

10 DIMENSION_ROLE PROPERTIES

11 ⟨dim_role_decl⟩+
12 END DIMENSION_ROLE PROPERTIES ';'

13 END CUBE ;

14

15 ⟨dim_def⟩ :

16 DIMENSION ⟨dim_name⟩ WITH

17 (

18 (

19 LEVEL PROPERTIES

20 ⟨lvl_decl⟩+
21 END LEVEL PROPERTIES ';'

22)

23 |

24 (

25 ATTRIBUTE PROPERTIES

26 ⟨attr_decl⟩+
27 END ATTRIBUTE PROPERTIES ';'

28)

29 |

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 153

30 (

31 CONSTRAINTS

32 (

33 ⟨roll_up_rel_decl⟩
34 | ⟨descr_rel_decl⟩
35)+

36 END CONSTRAINTS ';'

37)

38)+

39 END DIMENSION ;

40

41 ⟨m_del⟩ :

42 (

43 CUBE ⟨cube_name⟩
44 | DIMENSION ⟨dim_name⟩
45) ;

46

47 ⟨meas_decl⟩ :

48 ⟨meas_name⟩ ':' ⟨val_set_name⟩ ';' ;

49

50 ⟨dim_role_decl⟩ :

51 ⟨dim_role_name⟩ ':' ⟨dim_name⟩ ';' ;

52

53 ⟨lvl_decl⟩ :

54 ⟨lvl_name⟩ ':' ⟨val_set_name⟩ ';' ;

55

56 ⟨attr_decl⟩ :

57 ⟨attr_name⟩ ':' ⟨val_set_name⟩ ';' ;

58

59 ⟨roll_up_rel_decl⟩ :

60 ⟨lvl_name⟩ ROLLS_UP_TO ⟨lvl_name⟩ ';' ;

61

62 ⟨descr_rel_decl⟩ :

63 ⟨lvl_name⟩ DESCRIBED_BY ⟨attr_name⟩ ';' ;

64

65 ⟨cube_name⟩:
66 ⟨path_exp⟩ ;

67

68 ⟨dim_name⟩ :

69 ⟨path_exp⟩ ;

70

71 ⟨path_exp⟩ :

72 ⟨elem_name⟩
73 (

74 '/' ⟨elem_name⟩
75)* ;

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 154

Listing A.3: Syntax of the business term definition statements
1 ⟨ct_stmt⟩ :

2 ⟨t_def⟩
3 |

4 (

5 TERM

6 (

7 ⟨t_descr⟩
8 | ⟨t_temp⟩
9)

10) ;

11

12 ⟨t_def⟩ :

13 ⟨t_type⟩ ⟨t_name⟩
14 (

15 APPLIES TO ⟨var_decl⟩ (',' ⟨var_decl⟩)*

16)?

17 WITH

18 (

19 CONSTRAINTS ⟨cstr_decl⟩+ END CONSTRAINTS ';'

20)?

21 (

22 RETURNS ⟨value_set_name⟩ ';'

23)?

24 END ⟨t_type⟩ ;

25

26 ⟨t_descr⟩ :

27 DESCRIPTION FOR ⟨t_name⟩ WITH

28 (

29 (

30 LANGUAGE '=' ⟨lang_name⟩
31 | ALIAS '=' ⟨t_name⟩
32 (

33 ',' ⟨t_name⟩
34)*

35 | DESCRIPTION '=' ⟨descr_txt⟩
36) ';'

37)+

38 END TERM DESCRIPTION ;

39

40 ⟨t_temp⟩ :

41 TEMPLATE FOR ⟨t_name⟩ WITH

42 ⟨temp_elem⟩+
43 END TERM TEMPLATE ;

44

45 ⟨temp_elem⟩ :

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 155

46 (

47 ⟨temp_elem_meta⟩
48 | EXPRESSION '=' ⟨temp_txt⟩
49) ';' ;

50

51 ⟨temp_elem_meta⟩ :

52 (

53 DATA_MODEL '=' ⟨model_name⟩
54 | VARIANT '=' ⟨variant_name⟩
55 | LANGUAGE '=' ⟨language_name⟩
56 | DIALECT '=' ⟨dialect_name⟩
57) ;

58

59 ⟨var_decl⟩ :

60 ⟨var_exp⟩ ':' ⟨type⟩ ;

61

62 ⟨cstr_decl⟩ :

63 (

64 ⟨type_cstr_decl⟩
65 | ⟨prop_cstr_decl⟩
66 | ⟨dom_cstr_decl⟩
67 | ⟨return_cstr_decl⟩
68 | ⟨app_cstr_decl⟩
69) ';' ;

70

71 ⟨type_cstr_decl⟩ :

72 ⟨elem_exp⟩ ':' ⟨type⟩ ;

73

74 ⟨prop_cstr_decl⟩ :

75 ⟨elem_exp⟩ HAS ⟨m_prop_type⟩ ⟨elem_exp⟩ ;

76

77 ⟨dom_cstr_decl⟩ :

78 ⟨elem_exp⟩ '.' ⟨elem_exp⟩ ':' ⟨elem_exp⟩ ;

79

80 ⟨elem_exp⟩ :

81 ⟨var_exp⟩
82 | ⟨const_exp⟩ ;

83

84 ⟨var_exp⟩ :

85 '<' ⟨var_label⟩ '>' ;

86

87 ⟨const_exp⟩ :

88 ⟨const_name⟩ ;

89

90 ⟨prop_exp⟩ :

91 ⟨prop_name⟩ ;

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 156

92

93 ⟨t_del⟩ :

94 TERM

95 (

96 ⟨t_del_descr⟩
97 | ⟨t_del_temp⟩
98 | ⟨t_name⟩
99) ;

100

101 ⟨t_del_descr⟩ :

102 DESCRIPTION FOR ⟨t_name⟩
103 (

104 WITH LANGUAGE '=' ⟨lang_name⟩
105)? ;

106

107 ⟨t_del_temp⟩ :

108 TEMPLATE FOR ⟨t_name⟩
109 (

110 WITH

111 (

112 ⟨temp_elem_meta⟩
113)+

114 (

115 ',' ⟨temp_elem_meta⟩
116)*

117)? ;

Listing A.4: Syntax of the pattern definition statements
1 ⟨cp_stmt⟩ :

2 PATTERN

3 (

4 ⟨p_def⟩
5 | ⟨p_descr⟩
6 | ⟨p_temp⟩
7) ;

8

9 ⟨p_def⟩ :

10 ⟨p_name⟩ WITH

11 (

12 PARAMETERS ⟨param_decl⟩+ END PARAMETERS ';'

13)?

14 (

15 DERIVED ELEMENTS ⟨derv_decl⟩+ END DERIVED ELEMENTS ';'

16)?

17 (

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 157

18 LOCAL CUBES ⟨lc_decl⟩+ END LOCAL CUBES ';'

19)?

20 (

21 CONSTRAINTS ⟨cstr_decl⟩+ END CONSTRAINTS ';'

22)?

23 END PATTERN ;

24

25 ⟨p_descr⟩ :

26 DESCRIPTION FOR ⟨p_name⟩ WITH

27 (

28 (

29 LANGUAGE '=' ⟨lang_name⟩
30 | ALIAS '=' ⟨p_name⟩
31 (

32 ',' ⟨p_name⟩
33)*

34 | PROBLEM '=' ⟨prob_txt⟩
35 | SOLUTION '=' ⟨sol_txt⟩
36 | EXAMPLE '=' ⟨ex_txt⟩
37 | RELATED '=' ⟨p_name⟩
38 (

39 ',' ⟨p_name⟩
40)*

41) ';'

42)+

43 END PATTERN DESCRIPTION ;

44

45 ⟨p_temp⟩ :

46 TEMPLATE FOR ⟨p_name⟩ WITH

47 ⟨temp_elem⟩+
48 END PATTERN TEMPLATE ;

49

50 ⟨param_decl⟩ :

51 ⟨var_decl⟩ ';' ;

52

53 ⟨derv_decl⟩ :

54 ⟨var_decl⟩ '<=' ⟨elem_exp⟩ '.'

55 (

56 ⟨elem_exp⟩
57 | RETURNS

58) ';' ;

59

60 ⟨lc_decl⟩ :

61 ⟨type_lc_decl⟩
62 | ⟨dom_lc_decl⟩
63 | ⟨prop_lc_decl⟩ ;

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 158

64

65 ⟨type_lc_decl⟩ :

66 ⟨const_exp⟩ ':' ⟨type⟩ ;

67

68 ⟨dom_lc_decl⟩ :

69 ⟨elem_exp⟩ '.' ⟨elem_exp⟩ ':' ⟨elem_exp⟩ ;

70

71 ⟨prop_lc_decl⟩ :

72 ⟨elem_exp⟩ HAS ⟨m_prop_type⟩ ⟨elem_exp⟩ ;

73

74 ⟨return_cstr_decl⟩ :

75 ⟨elem_exp⟩ RETURNS ⟨elem_exp⟩ ;

76

77 ⟨app_cstr_decl⟩ :

78 ⟨elem_exp⟩ IS_APPLICABLE_TO

79 (

80 ⟨elem_exp⟩
81 | '(' ⟨elem_exp⟩ ','⟨elem_exp⟩ ')'

82) ;

83

84 ⟨p_name⟩ :

85 ⟨path_exp⟩;

Listing A.5: Syntax of the pattern usage statements
1 ⟨i_stmt⟩ :

2 INSTANTIATE ⟨p_inst⟩ ;

3

4 ⟨g_stmt⟩ :

5 GROUND ⟨p_grnd⟩ ;

6

7 ⟨x_stmt⟩ :

8 EXECUTE ⟨p_exec⟩ ;

9

10 ⟨p_inst⟩ :

11 PATTERN ⟨p_name⟩ AS ⟨p_name⟩ WITH BINDINGS? ⟨binding_exp⟩
12 (

13 ',' ⟨binding_exp⟩
14)*

15 (

16 END BINDINGS

17)? ;

18

19 ⟨p_grnd⟩ :

20 PATTERN ⟨p_name⟩ FOR ⟨mdm_name⟩ USING ⟨voc_name⟩ ;

21

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 159

22 ⟨p_exec⟩ :

23 PATTERN ⟨p_name⟩ FOR ⟨mdm_name⟩ USING ⟨voc_name⟩
24 (

25 WITH TEMPLATE

26 (

27 ⟨temp_elem_meta⟩
28)+

29 (

30 ',' ⟨temp_elem_meta⟩
31)*

32)? ;

33

34 ⟨p_del⟩ :

35 PATTERN

36 (

37 ⟨p_del_descr⟩
38 | ⟨p_del_temp⟩
39 | ⟨p_name⟩
40) ;

41

42 ⟨p_del_descr⟩ :

43 DESCRIPTION FOR ⟨p_name⟩
44 (

45 WITH LANGUAGE '=' ⟨lang_name⟩
46)? ;

47

48 ⟨p_del_temp⟩ :

49 TEMPLATE FOR ⟨p_name⟩
50 (

51 WITH

52 (

53 ⟨temp_elem_meta⟩
54)+

55 (

56 ',' ⟨temp_elem_meta⟩
57)*

58)? ;

Listing A.6: Syntax of repository organization and search statements
1 ⟨cr_stmt⟩ :

2 ⟨r_exp⟩ ;

3

4 ⟨s_stmt⟩ :

5 SHOW ⟨path_exp⟩ ;

6

7 ⟨f_stmt⟩ :

APPENDIX A. ANTLR4 GRAMMAR DEFINITIONS 160

8 SEARCH ⟨s_trgt⟩
9 (

10 IN ⟨path_exp⟩
11)? ⟨s_exp⟩+ ;

12

13 ⟨s_trgt⟩ :

14 REPOSITORY

15 | CATALOGUE

16 | GLOSSARY

17 | MULTIDIMENSIONAL_MODEL

18 | PATTERN

19 | TERM

20 | CUBE

21 | DIMENSION ;

22

23 ⟨s_exp⟩ :

24 CONTAIN ⟨s_name⟩ IN

25 (

26 ⟨s_sct⟩
27 (

28 ',' ⟨s_sct⟩
29)*

30)+ ;

31

32 ⟨s_sct⟩ :

33 NAME

34 | LANGUAGE

35 | ALIAS

36 | PROBLEM

37 | SOLUTION

38 | EXAMPLE

39 | RELATED ;

40

41 ⟨r_del⟩ :

42 ⟨r_exp⟩ ;

43

44 ⟨r_exp⟩ :

45 (

46 REPOSITORY

47 | CATALOGUE

48 | GLOSSARY

49 | MULTIDIMENSIONAL_MODEL

50) ⟨s_name⟩ ;

51

52 ⟨s_name⟩ :

53 ⟨path_exp⟩ ;

Appendix B
Domain-Independent Pattern

Catalog

The domain-independent patterns identified in the course of the agriProKnow research and
development projects are presented in the following as a domain-independent catalog of
patterns. To this end, we present the domain-independent patterns in two groups. The group
of basic patterns comprises the non-comparative pattern (Figure B.1 to Figure B.4), while
the group of comparative patterns comprises the homogeneous subset-baseset comparison
(Figure B.5 to Figure B.9), the homogeneous subset-complement comparison (Figure B.10
to Figure B.14), the homogeneous subset-subset comparison (Figure B.15 to Figure B.19),
and the heterogeneous subset-subset comparison (Figure B.20 to Figure B.24).

161

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 162

B.1 Non-Comparative Pattern

Figure B.1: Aliases, problem, solution, context, and related patterns of the non-comparative
pattern

Non-Comparative Query

Also Known As
Grouping Query, Aggregation Query, Simple Aggregation

Problem
Retrieve aggregated measure values for one specific group of facts from a single source

cube, which should be aggregated.

Solution
From the ⟨sourceCube⟩, select the set of relevant facts using the unary

cube predicate ⟨cubeSlice⟩. In addition, the relevant facts are restricted by

Query
Result

Result
Cube

<sourceCube>

σ

σ

specifying a unary dimension predicate ⟨dimSlice⟩ over the dimen-
sion ⟨sliceDim⟩ that is referenced by the cube’s dimension role
⟨sliceDimRole⟩. Perform a roll-up according to the ⟨groupCond⟩ di-
mension grouping over the ⟨groupDim⟩ dimension that is referenced
by the cube’s dimension role ⟨groupDimRole⟩. Finally, compute
a calculated measure ⟨cubeMeasure⟩, then return only the results
satisfying the ⟨aggrCond⟩ cube predicate.

Context

<sourceCube> <sliceDimRole>
<sliceDim>

<groupDimRole>

<groupDim>

 <cubeMeasure>:/<cubeMeasureDom>

resultCube

<ctx><ctx>

 <aggrCond> <dimSlice>

<ctx>

 <cubeMeasure>

<ctx> <groupCond>

1

1

1

1

/<cubeMeasureDom>

<ctx>

 <cubeSlice>1

Related Patterns
Milking Aggregation, Revenue Aggregation

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 163

Figure B.2: A template and an example for non-comparative pattern (continued from
Figure B.1)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH resultCube AS (
2 SELECT $expr(<groupCond >, groupDim),
3 $expr(<cubeMeasure >, c) AS <cubeMeasure >
4 FROM <sourceCube > c
5 JOIN <sliceDim > sliceDim ON
6 c.<sliceDimRole > = sliceDim.$dimKey(<sliceDim >)
7 JOIN <groupDim > groupDim ON
8 c.<groupDimRole > = groupDim.$dimKey(<groupDim >)
9 WHERE $expr(<cubeSlice >, c) AND

10 $expr(<dimSlice >, sliceDim)
11 GROUP BY $expr(<groupCond >, groupDim)
12)
13
14 SELECT *
15 FROM resultCube rc
16 WHERE $expr(<aggrCond >, rc)

Example

Consider dairy company Happy Milk, which consists of three farms located at different
sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments.

Date:
Date

Month:
Month No

Year:
Year No

Milking Time
Time

Month Label:
Month Name

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm
Cattle

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id: Ssn

Calving Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

High Average Montly Milk Yield

<ctx>."Average Milk Yield":"Liquid In Liter"

<ctx>."Average Milk Yield" > 250

<ctx>:Cube

<ctx>

 <ctx>."Month Label":"Month Name"

<ctx>."Month Label"="September"

<ctx>:Dimension

September

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

11

1

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm1

High Fat Content

<ctx>."Fat Content":"Percent Per Liter"

<ctx>."Fat Content" > 4.5

<ctx>:Cube

1

<ctx>

<ctx>

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 164

Figure B.3: Example for non-comparative pattern (continued from Figure B.2)

In precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., micro-climate in the barns (temperature
and moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.

The management of Happy Milk decides that the production of high-fat milk should be
increased, since a higher price can be obtained for it. The aim is to identify farms producing
a high quantity of high-fat milk which can then be examined with regard to feeding and
husbandry conditions in order to derive recommendations for action. Therefore, the average
quantity of high-fat milk per farm produced in September has to be calculated, considering
only high monthly average milk yields.

To obtain an executable OLAP query based on the non-comparative query pattern, a
pattern user (BI user) simply binds names of available eMDM elements for each pattern
parameter during pattern instantiation. In the Happy Milk scenario, the cube name Milking,
which refers to the cube that tracks milk yield of farms in the Happy Milk eMDM, is
bound to ⟨sourceCube⟩. The cube is restricted by binding the unary cube predicate name
High Fat Content to the parameter ⟨cubeSlice⟩. The Milking cube in the Happy Milk
eMDM has a dimension role property Milking Time that references a dimension Time as
its domain and thus a time-specific restriction is applicable to this cube – Milking Time is
bound to ⟨sliceDimRole⟩. The unary predicate name September is bound to the parameter
⟨dimSlice⟩ to restrict a dimension ⟨sliceDim⟩ referenced by the cube’s dimension role
Milking Time. The ⟨groupCond⟩ parameter is assigned the Per Farm dimension grouping
to be applied on a dimension referenced by the cube’s dimension role Farm that is bound
to ⟨groupDimRole⟩. Finally, Average Milk Yield is bound to the unary calculated measure
⟨cubeMeasure⟩ indicating the measure to be calculated, while High Average Monthly Milk

Yield is bound to the unary cube predicate ⟨aggrCond⟩ referring to the restrictions to be
applied to the result cube.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 165

Figure B.4: Example for non-comparative pattern (continued from Figure B.3)

With parameters for the non-comparative pattern bound as before, pattern grounding
over the Happy Milk eMDM yields an applicable ground pattern that is executed resulting
in the SQL query shown below, which returns an average milk yield per farm considering
only milking events in September with a high fat content, showing only result of farms with
a high monthly average milk yield.

1 WITH resultCube AS (
2 SELECT groupDim."Farm Id",
3 AVG(c."Milk Yield") AS "Average Milk Yield"
4 FROM "Milking" c
5 JOIN "Time" sliceDim ON
6 c."Milking Time" = sliceDim."Date"
7 JOIN "Farm" groupDim ON
8 c."Farm" = groupDim."Farm Id"
9 WHERE c."Fat Content" > 4.5 AND

10 sliceDim."Month Label" = "September"
11 GROUP BY groupDim."Farm Id"
12)
13
14 SELECT *
15 FROM resultCube rc
16 WHERE rc."Average Milk Yield" > 250

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 166

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 167

B.2 Homogeneous Subset-Baseset Comparison

Figure B.5: Aliases, problem, solution, and context of the homogeneous subset-baseset
comparison pattern

Homogeneous Subset-Baseset Comparison

Also Known As
Group-Rest Comparison, Part-Whole Comparison

Problem
Aggregated measure values for one specific group of facts from one cube should be

compared to aggregated measure values of another specific group of facts – of which it is a
subset – by calculating a comparative measure.

Solution
From the ⟨sourceCube⟩, select the set of relevant facts using the unary

cube predicate ⟨baseCubeSlice⟩ and the unary dimension predicate ⟨baseDimSlice⟩,
which selects over the ⟨baseDim⟩ dimension referenced by the cube’s dimen-
sion role ⟨dimRole⟩ – the result serves as the base cube for further analysis.

Interest
Cube

Comparison
Cube

σ

Result
Cube

σ

Base
Cube

<sourceCube>
Query
Result

σ

From that base cube, select the facts of interest using con-
ditions over the dimension role ⟨iDimRole⟩ according to the
unary dimension predicate ⟨iDimSlice⟩, yielding the interest
cube. The comparison cube is represented by the base cube,
without further fact restrictions, hence, it includes the facts of
the interest cube as well. Perform a roll-up for interest cube
and comparison cube according to the ⟨groupCond⟩ dimension
grouping over the ⟨joinDim⟩ dimension referenced by the dimension role ⟨joinDimRole⟩ and
compute a unary calculated measure ⟨cubeMeasure⟩. To obtain the result cube, join the
interest cube and comparison cube over the ⟨groupCond⟩ dimension grouping and compute
a binary calculated measure ⟨compMeasure⟩, then return only the results satisfying the unary
cube predicate ⟨compAggrCond⟩.

Context

<ctx>

<sourceCube> <dimRole>

<iDimRole>

 <joinDim>

<joinDimRole>

 <iDim>

<iDimSlice>

<baseDimSlice>

<ctx> <cubeMeasure>

<ctx>

<groupCond>

1

1 1

1

<ctx>

<ctx>[2]<ctx>[1]

 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

<baseDim>

 <compMeasure>:/<compMeasureDom>

resultCube

<baseCubeSlice>1

<ctx>

<compAggrCond>1

<ctx>

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 168

Figure B.6: A template and related patterns for subset-baseset comparison (continued from
Figure B.5)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc JOIN
4 <baseDim > bd ON
5 sc.<dimRole > = bd.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, bd)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc JOIN
13 <iDim > cd ON
14 bc.<iDimRole >=cd.$dimKey(<iDim >) JOIN
15 <joinDim > jd ON
16 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 comparisonCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc JOIN
24 <joinDim > jd ON
25 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
26 GROUP BY $expr(<groupCond >, jd)
27),
28 resultCube AS (
29 SELECT $expr(<groupCond >, ic),
30 ic.<cubeMeasure > AS "Group of Interest",
31 cc.<cubeMeasure > AS "Group of Comparison",
32 $expr(<compMeasure >, ic, cc) AS <compMeasure >
33 FROM interestCube ic JOIN
34 comparisonCube cc ON
35 $expr(<groupCond >, ic) = $expr(<groupCond >, cc)
36)
37
38 SELECT *
39 FROM resultCube rc
40 WHERE $expr(<compAggrCond >, rc)

Related Patterns
Subset-Complement Comparison, Subset-Baseset Comparison of Milkings

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 169

Figure B.7: Example for subset-baseset comparison (continued from Figure B.6)

Example
Consider dairy company Happy Milk, which consists of three farms located at different

sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments. In
precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., microclimate in the barns (temperature and
moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

Date:
Date

Month:
Month No

Year:
Year No

Milking Time
Time

Month Label:
Month Name

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm
Cattle

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id: Ssn

Calving Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

<ctx>."Month Label":"Month Name"

 <ctx>."Month Label" = "September"

<ctx>:Dimension

September

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm

<ctx>

<ctx>[1] <ctx>[2]

Average Milk Yield Ratio

<ctx>[1]:Cube, <ctx>[2]:Cube

AVG(<ctx>[1]."Milk Yield")/

AVG(<ctx>[2]."Milk Yield")

<ctx>[1] has Measure "Milk Yield",
<ctx>[1]."Milk Yield":"Liquid In Liter",
<ctx>[2] has Measure "Milk Yield",

<ctx>[2]."Milk Yield":"Liquid In Liter"

<ctx>."Main Breed":"Breed Name"

<ctx>."Main Breed"="Guernsey"

<ctx>:Dimension

Guernsey

<ctx>

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

"Rational Number"

1

1

2

1

High Fat Content

<ctx>."Fat Content":"Percent Per Liter"

<ctx>."Fat Content" > 4.5

<ctx>:Cube

1

<ctx>

<ctx>High Avg Milk Yield Ratio

<ctx>:Cube

<ctx>."Average Milk Yield Ratio":
"Liquid In Liter"

ABS(1-<ctx>."Average Milk

Yield Ratio")>0.2

1

1

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 170

Figure B.8: Example for subset-baseset comparison (continued from Figure B.7)

Happy Milk added Guernsey cattle to the farm herds in August to increase milk production,
especially the production of high-fat milk. As the Guernsey breed of cattle was bred to
achieve a high milk yield with a high fat concentration, the newly acquired cattle should
outperform the existing herd in terms of milk yield with high fat content. To verify this
assumption, the ratio between the average milk yield of Guernsey cattle and the average
milk yield of all cattle has to be calculated, considering only milking events with a high fat
content in September. On a more abstract level, that query corresponds to subset-baseset
comparison, i.e., the computation of a ratio between the measure values of a subset of facts
and its baseset of facts, referring to a certain milking time – in this case, September –, the
group of interest is distinguished according to the main breed – in this case, Guernsey.

To obtain an executable OLAP query based on the subset-baseset comparison pattern,
a pattern user (BI user) simply binds names of available eMDM elements for each pattern
parameter during pattern instantiation. In the Happy Milk scenario, the cube name Milking,
which refers to the cube that tracks milk yield of farms in the Happy Milk eMDM, is bound
to ⟨sourceCube⟩ – it is restricted by the unary cube predicate name High Fat Content that is
bound to the parameter ⟨baseCubeSlice⟩. The unary dimension predicate name September

is bound to the parameter ⟨baseDimSlice⟩ to restrict the dimension referenced by ⟨dimRole⟩
dimension role named Milking Time. The ⟨iDimRole⟩ is set to the name Cattle since it
refers to a dimension which can be used for further restrictions. The group of fact that
is to be compared to its baseset is specified by the unary dimension predicate Guernsey

for the ⟨iDimSlice⟩. As the groups should be compared per farm the Farm dimension
role is specified as the ⟨joinDimRole⟩. The ⟨groupCond⟩ parameter is assigned the Per

Farm dimension grouping while ⟨cubeMeasure⟩ is assigned the Average Milk Yield derived
cube measure. Finally, Average Milk Yield is bound to the unary calculated measure
⟨cubeMeasure⟩ indicating the measure to be calculated, while High Average Monthly Milk

Yield is bound to the unary cube predicate ⟨compAggrCond⟩ referring to the restrictions to
be applied to the result cube.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 171

Figure B.9: Example for subset-baseset comparison (continued from Figure B.8)

With parameters for the subset-baseset comparison bound as before, pattern grounding
over the Happy Milk eMDM yields an applicable ground pattern that is executed resulting
in the SQL query shown below, which compares per farm the average milk yield with a high
fat content of Guernsey cattle in September with the average milk yield with a high fat
content of all cattle in September, showing only results where the difference in milk yields
between the groups exceeds 20 percent.

1 WITH baseCube AS (
2 SELECT *
3 FROM "Milking" sc JOIN
4 "Time" bd ON
5 sc."Milking Time" = bd."Date"
6 WHERE sc."Fat Content" > 4.5 AND
7 bd."Month Label" = "September"
8),
9 interestCube AS (

10 SELECT jd."Farm Id",
11 AVG(bc,"Milk Yield") AS "Average Milk Yield"
12 FROM baseCube bc JOIN
13 "Farm" jd ON
14 bc."Farm" = jd."Farm Id" JOIN
15 "Animal" cd ON
16 bc."Cattle" = cd."Animal"
17 WHERE cd."Main Breed" = "Guernsey"
18 GROUP BY jd."Farm Id"
19),
20 comparisonCube AS (
21 SELECT jd."Farm Id",
22 AVG(bc,"Milk Yield") AS "Average Milk Yield"
23 FROM baseCube bc JOIN
24 "Farm" jd ON
25 bc."Farm" = jd."Farm Id" JOIN
26 GROUP BY jd."Farm Id"
27),
28 resultCube AS (
29 SELECT ic."Farm Id",
30 ic."Average Milk Yield" AS "Group of Interest",
31 cc."Average Milk Yield" AS "Group of Comparison",
32 (ic."Average Milk Yield"/cc."Average Milk Yield") AS "Average

Milk Yield Ratio"
33 FROM interestCube ic JOIN
34 comparisonCube cc ON
35 ic."Farm Id" = cc."Farm Id"
36)
37
38 SELECT *
39 FROM resultCube rc
40 WHERE ABS(1-rc."Average Milk Yield Ratio") >0.2

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 172

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 173

B.3 Homogeneous Subset-Complement Comparison

Figure B.10: Aliases, problem, solution, and context of the homogeneous subset-complement
comparison

Homogeneous Subset-Complement Comparison

Also Known As
Group to Complement Comparison, Set to Other Comparison

Problem
Aggregated measure values of a particular group of facts should be compared with its

complement group of facts, with both group of facts coming from one cube.

Solution
From the ⟨sourceCube⟩, select the set of relevant facts using the unary

cube predicate ⟨baseCubeSlice⟩ and the unary dimension predicate ⟨baseDimSlice⟩,
which selects over the ⟨baseDim⟩ dimension referenced by the cube’s dimen-
sion role ⟨dimRole⟩ – the result serves as the base cube for further analysis.

σ

Interest
Cube

Complement
Cube

σ

Result
Cube

σ

Base
Cube

<sourceCube>
Query
Result

σ

From that base cube, select interest cube using conditions
over the dimension role ⟨iDimRole⟩ according to the dimension
predicate ⟨iDimSlice⟩, yielding the interest cube. The comple-
ment cube is represented by the base cube, without including
facts from the interest cube. Perform a roll-up for interest
cube and complement cube according to the ⟨groupCond⟩ di-
mension grouping over the ⟨joinDim⟩ dimension referenced by
the dimension role ⟨joinDimRole⟩ and compute a unary calculated measure ⟨cubeMeasure⟩.
To obtain the result cube, join the interest cube and complement cube over the ⟨groupCond⟩
dimension grouping and compute a binary derived comparative measure ⟨compMeasure⟩,
then return only the results satisfying the unary cube predicate ⟨compAggrCond⟩.

Context

<ctx>

<sourceCube> <dimRole>

<iDimRole>

 <joinDim>

<joinDimRole>

 <iDim>

<iDimSlice>

<baseDimSlice>

<ctx> <cubeMeasure>

<ctx>

<groupCond>

1

1 1

1

<ctx>

<ctx>[2]<ctx>[1]

 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

<baseDim>

 <compMeasure>:/<compMeasureDom>

resultCube

<baseCubeSlice>1

<ctx>

<compAggrCond>1

<ctx>

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 174

Figure B.11: A template and related patterns for subset-complement comparison (continued
from Figure B.10)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc
4 JOIN <baseDim > bd ON
5 sc.<dimRole > = bd.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, bd)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc
13 JOIN <iDim > cd ON
14 bc.<iDimRole >=cd.$dimKey(<iDim >)
15 JOIN <joinDim > jd ON
16 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 complementCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc
24 JOIN <iDim > cd ON
25 bc.<iDimRole >=cd.$dimKey(<iDim >)
26 JOIN <joinDim > jd ON
27 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
28 WHERE bc.<iDimRole > NOT IN
29 (SELECT $dimKey(<iDim >)
30 FROM <iDim >
31 WHERE $expr(<iDimSlice >, <iDim >))
32 GROUP BY $expr(<groupCond >, jd)
33),
34 resultCube AS (
35 SELECT $expr(<groupCond >, ic),
36 ic.<cubeMeasure > AS "Group of Interest",
37 cc.<cubeMeasure > AS "Group of Comparison",
38 $expr(<compMeasure >, ic, cc) AS <compMeasure >
39 FROM interestCube ic
40 JOIN complementCube cc ON
41 $expr(<groupCond >, ic) = $expr(<groupCond >, cc)
42)
43 SELECT *
44 FROM resultCube rc
45 WHERE $expr(<compAggrCond >, rc)

Related Patterns
Homogeneous Subset-Baseset Comparison, Subset-Complement Comparison of Milkings

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 175

Figure B.12: Example for subset-complement comparison (continued from Figure B.11)

Example
Consider dairy company Happy Milk, which consists of three farms located at different

sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments. In
precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., microclimate in the barns (temperature and
moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

Date:
Date

Month:
Month No

Year:
Year No

Milking Time
Time

Month Label:
Month Name

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm
Cattle

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id: Ssn

Calving Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

<ctx>."Month Label":"Month Name"

 <ctx>."Month Label" = "September"

<ctx>:Dimension

September

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm

<ctx>

<ctx>[1]<ctx>[2]

Average Milk Yield Ratio

<ctx>[1]:Cube, <ctx>[2]:Cube

AVG(<ctx>[1]."Milk Yield")/

AVG(<ctx>[2]."Milk Yield")

<ctx>[1] has Measure "Milk Yield",
<ctx>[1]."Milk Yield":"Liquid In Liter",
<ctx>[2] has Measure "Milk Yield",

<ctx>[2]."Milk Yield":"Liquid In Liter"

<ctx>."Main Breed":"Breed Name"

<ctx>."Main Breed"="Guernsey"

<ctx>:Dimension

Guernsey

<ctx>

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

"Rational Number"

1

1

2

1

High Fat Content

<ctx>."Fat Content":"Percent Per Liter"

<ctx>."Fat Content" > 4.5

<ctx>:Cube

1

<ctx>

<ctx>High Avg Milk Yield Ratio

<ctx>:Cube

<ctx>."Average Milk Yield Ratio":
"Liquid In Liter"

ABS(1-<ctx>."Average Milk

Yield Ratio")>0.2

1

1

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 176

Figure B.13: Example for subset-complement comparison (continued from Figure B.12)

Happy Milk added Guernsey cattle to the farm herds in August to increase milk production,
especially the production of high-fat milk. As the Guernsey breed of cattle was bred to
achieve a high milk yield with a high fat concentration, the newly acquired cattle should
outperform the existing herd in terms of milk yield with high fat content. To verify this
assumption, the ratio between the average milk yield of Guernsey cattle and the average
milk yield of all other cattle has to be calculated, considering only milking events with
a high fat content in September. On a more abstract level, that query corresponds to
subset-complement comparison, i.e., the computation of a ratio between the measure values
of a subset of facts and its complement set of facts, referring to a certain milking time – in
this case, September –, the group of interest is distinguished according to the main breed –
in this case, Guernsey.

To obtain an executable OLAP query based on the subset-complement comparison
pattern, a pattern user (BI user) simply binds names of available eMDM elements for each
pattern parameter during pattern instantiation. In the Happy Milk scenario, the cube name
Milking, which refers to the cube that tracks milk yield of farms in the Happy Milk eMDM, is
bound to ⟨sourceCube⟩ – it is restricted by the unary cube predicate name High Fat Content

that is bound to the parameter ⟨baseCubeSlice⟩. The unary dimension predicate name
September is bound to the parameter ⟨baseDimSlice⟩ to restrict the dimension referenced by
⟨dimRole⟩ dimension role named Milking Time. The ⟨iDimRole⟩ is set to the name Cattle

since it refers to a dimension which can be used for further restrictions. The group of
fact that is to be compared to its baseset is specified by the Guernsey dimension predicate
for the ⟨iDimSlice⟩. As the groups should be compared per farm the Farm dimension
role is specified as the ⟨joinDimRole⟩. The ⟨groupCond⟩ parameter is assigned the Per

Farm dimension grouping while ⟨cubeMeasure⟩ is assigned the Average Milk Yield derived
cube measure. Finally, Average Milk Yield is bound to the unary calculated measure
⟨cubeMeasure⟩ indicating the measure to be calculated, while High Average Monthly Milk

Yield is bound to the unary cube predicate ⟨compAggrCond⟩ referring to the restrictions to
be applied to the result cube.

With parameters for the subset-complement comparison bound as before, pattern
grounding over the Happy Milk eMDM yields an applicable ground pattern that is executed
resulting in the SQL query shown below, which compares per farm the average milk yield
with a high fat content of Guernsey cattle in September with the average milk yield with a
high fat content of all cattle other than Guernsey in September, showing only results where
the difference in milk yields between the groups exceeds 20 percent.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 177

Figure B.14: Example for subset-complement comparison (continued from Figure B.13)

1 WITH baseCube AS (
2 SELECT *
3 FROM "Milking" sc
4 JOIN "Time" sd ON
5 sc."Milking Time" = sd."Date"
6 WHERE sc."Fat Content" > 4.5 AND
7 sd."Month Label" = "September"
8),
9 interestCube AS (

10 SELECT jd."Farm Id",
11 AVG(bc,"Milk Yield") AS "Average Milk Yield"
12 FROM baseCube bc
13 JOIN "Farm" jd ON
14 bc."Farm" = jd."Farm Id"
15 JOIN "Animal" cd ON
16 bc."Cattle" = cd."Animal"
17 WHERE cd."Main Breed" = "Guernsey"
18 GROUP BY jd."Farm Id"
19),
20 complementCube AS (
21 SELECT jd."Farm Id",
22 AVG(bc,"Milk Yield") AS "Average Milk Yield"
23 FROM baseCube bc
24 JOIN "Farm" jd ON
25 bc."Farm" = jd."Farm Id"
26 JOIN "Animal" cd ON
27 bc."Cattle" = cd."Animal"
28 WHERE bc."Cattle" NOT IN
29 (SELECT "Animal"
30 FROM "Animal"
31 WHERE "Animal"."Main Breed"="Guernsey")
32 GROUP BY jd."Farm Id"
33),
34 resultCube AS (
35 SELECT ic."Farm Id",
36 ic."Average Milk Yield" AS "Group of Interest",
37 cc."Average Milk Yield" AS "Group of Comparison",
38 (ic."Average Milk Yield"/cc."Average Milk Yield") AS "Average

Milk Yield Ratio"
39 FROM interestCube ic
40 JOIN complementCube cc ON
41 ic."Farm Id" = cc."Farm Id"
42)
43
44 SELECT *
45 FROM resultCube rc
46 WHERE ABS(1-rc."Average Milk Yield Ratio") >0.2

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 178

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 179

B.4 Homogeneous Subset-Subset Comparison

Figure B.15: Aliases, problem, solution, and context of the homogeneous subset-subset
comparison

Homogeneous Subset-Subset Comparison

Also Known As
Group-Group Comparison, Set to Set Comparison

Problem
Retrieve aggregated measure values for two specified groups of facts from a single source

cube, which should be compared by calculating a comparative measure.

Solution
From the ⟨sourceCube⟩, select the set of relevant facts using the unary cube predicate

⟨baseCubeSlice⟩ and the unary dimension predicate ⟨baseDimSlice⟩, which selects over the
dimension referenced by the ⟨dimRole⟩ – the result serves as the base cube for further analysis.

Interest
Cube

Comparison
Cube

σ

σ
Result
Cube

σ

Base
Cube

<sourceCube>
Query
Result

σ

From that base cube, select interest cube and comparison
cube using conditions over the dimension role ⟨compDimRole⟩
according to the unary dimension predicates ⟨iDimSlice⟩ and
⟨cDimSlice⟩, respectively. Perform a roll-up for interest cube
and comparison cube according to the ⟨groupCond⟩ dimension
grouping over the ⟨joinDim⟩ dimension referenced by the di-
mension role ⟨joinDimRole⟩ and compute a unary calculated
measure ⟨cubeMeasure⟩. To obtain the result cube, join the interest cube and compar-
ison cube over the ⟨groupCond⟩ dimension grouping and compute a binary calculated
measure ⟨compMeasure⟩, then return only the results satisfying the unary cube predicate
⟨compAggrCond⟩.

Context

<ctx><sourceCube>

<ctx>

<compDim>

<compDimRole><compDimRole>

 <joinDim>

<joinDimRole>

 <compDim>

 <baseCubeSlice>

<iDimSlice> <cDimSlice>

<baseDimSlice>

<ctx>

 <cubeMeasure>

<ctx>

<groupCond>

1

1

1 1 1

1

<ctx> <ctx>

<ctx>[2]<ctx>[1]

 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

<dimRole>

<compDim>

<ctx>

 <compMeasure>:/<compMeasureDom>

resultCube

<compAggrCond>2

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 180

Figure B.16: A template and related patterns for homogeneous subset-subset comparison
(continued from Figure B.15)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc
4 JOIN <baseDim > bd ON
5 sc.<dimRole > = bd.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, bd)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc
13 JOIN <compDim > cd ON
14 bc.<compDimRole >=cd.$dimKey(<compDim >)
15 JOIN <joinDim > jd ON
16 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 comparisonCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc
24 JOIN <compDim > cd ON
25 bc.<compDimRole >=cd.$dimKey(<compDim >)
26 JOIN <joinDim > jd ON
27 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
28 WHERE $expr(<cDimSlice >, cd)
29 GROUP BY $expr(<groupCond >, jd)
30),
31 resultCube AS (
32 SELECT $expr(<groupCond >, ic),
33 ic.<cubeMeasure > AS "Group of Interest",
34 cc.<cubeMeasure > AS "Group of Comparison",
35 $expr(<compMeasure >, ic, cc) AS <compMeasure >
36 FROM interestCube ic
37 JOIN comparisonCube cc ON
38 $expr(<groupCond >, ic) = $expr(<groupCond >, cc)
39)
40 SELECT *
41 FROM resultCube rc
42 WHERE $expr(<compAggrCond >, rc)

Related Patterns
Breed-Specific Subset-Subset Comparison

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 181

Figure B.17: Example for homogeneous subset-subset comparison (continued from Fig-
ure B.16)

Example
Consider dairy company Happy Milk, which consists of three farms located at different

sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments.

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm
Cattle

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id: Ssn

Calving Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm

<ctx>

<ctx>[1] <ctx>[2]

Average Milk Yield Ratio

<ctx>[1]:Cube, <ctx>[2]:Cube

AVG(<ctx>[1]."Milk Yield")/

AVG(<ctx>[2]."Milk Yield")

<ctx>[1] has Measure "Milk Yield",
<ctx>[1]."Milk Yield":"Liquid In Liter",
<ctx>[2] has Measure "Milk Yield",

<ctx>[2]."Milk Yield":"Liquid In Liter"

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

"Rational Number"

1

1

2

<ctx>

High Avg Milk Yield Ratio

<ctx>:Cube

<ctx>."Average Milk Yield Ratio":
"Liquid In Liter"

ABS(1-<ctx>."Average Milk

Yield Ratio")>0.2

1

<ctx>

<ctx>."Main Breed":"Breed Name"

<ctx>."Main Breed"="Holstein"

<ctx>:Dimension

Holstein

<ctx>."Date Of Birth":"Date"

trunc((SYSDATE–<ctx>.

"Date Of Birth")/365.25)<3

<ctx>:Dimension

Young Cattle

<ctx>

1

1

<ctx>."Date Of Birth":"Date"

trunc((SYSDATE–<ctx>.

"Date Of Birth")/365.25)>=3

<ctx>:Dimension

Old Cattle1

Low Daily Milk Yield

<ctx>."Milk Yield":"Liquid In Liter"

<ctx>."Milk Yield" < 7.4

<ctx>:Cube

1

Date:
Date

Month:
Month No

Year:
Year No

Milking Time Time
Month Label:
Month Name

<ctx>

In precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., microclimate in the barns (temperature and
moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 182

Figure B.18: Example for homogeneous subset-subset comparison (continued from Fig-
ure B.17)

Happy Milk detects a drop in the milk yield of Holstein cattle. Multiple causes can lead
to a decreased milk production but, first of all, the affected Holstein population needs to be
identified. A BI user may start the investigation with the computation of the ratio between
the average milk yield of young Holstein cattle and the average milk yield of old Holstein
cattle, considering only animals that have and low daily milk yield. On a more abstract
level, that query corresponds to subset-subset comparison, i.e., the computation of a ratio
between measure values for two subsets of facts, referring to a certain breed – in this case,
Holstein –, each group distinguished according to specified characteristics – in this case,
the date of birth.

To obtain an executable OLAP query based on the subset-subset comparison pattern,
the pattern user (BI user) simply binds names of available eMDM elements for each pattern
parameter during pattern instantiation. In the Happy Milk scenario, the cube name Milking,
which refers to the cube that tracks milk yield of farms in the Happy Milk eMDM, is bound
to ⟨sourceCube⟩. The Milking cube in the Happy Milk eMDM has a dimension role Cattle

that references a dimension Animal, i.e., Cattle is bound to ⟨dimRole⟩. The unary dimension
predicate name Holstein is bound to the parameter ⟨baseDimSlice⟩ whereas the uanry
cube predicate name Low Daily Milk Yield is bound to the parameter ⟨baseCubeSlice⟩.
The ⟨compDimRole⟩ is set to the name Cattle since it refers to a dimension which can be
used for further restrictions. The groups of facts that are to be compared are specified by
the unary dimension predicate Young Cattle for the ⟨iDimSlice⟩ and the unary dimension
predicate Old Cattle for the ⟨cDimSlice⟩. As the groups should be compared per farm
the Farm dimension role is specified as the ⟨joinDimRole⟩. The ⟨groupCond⟩ parameter
is assigned the Per Farm dimension grouping while ⟨cubeMeasure⟩ is assigned the unary
calculated measure Average Milk Yield. Finally, Average Milk Yield Ratio is bound to
the binary calculated measure ⟨compMeasure⟩ indicating the measure to be calculated, while
High Avg Milk Yield Ratio is bound to the unary cube predicate ⟨compAggrCond⟩ referring
to the restrictions to be applied to the result cube.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 183

Figure B.19: Example for homogeneous subset-subset comparison (continued from Fig-
ure B.18)

With parameters for the breed-specific subset-subset comparison bound as before, pattern
grounding over the Happy Milk eMDM yields an applicable ground pattern that is executed
resulting in the SQL query shown below, which compares per farm the average milk yield
of cattle younger than three years that have a low daily milk yield with cattle older than
three years that have a low daily milk yield, showing only results where the difference in
milk yields between the groups exceeds 20 percent.

1 WITH baseCube AS (
2 SELECT *
3 FROM "Milking" sc
4 JOIN "Animal" sd ON
5 sc."Cattle" = sd."Animal"
6 WHERE sc."Milk Yield" < 7.4 AND
7 sd."Main Breed" = "Holstein"
8),
9 interestCube AS (

10 SELECT jd."Farm Id",
11 AVG(bc,"Milk Yield") AS "Average Milk Yield"
12 FROM baseCube bc
13 JOIN "Farm" jd ON
14 bc."Farm" = jd."Farm Id"
15 JOIN "Animal" cd ON
16 bc."Cattle" = cd."Animal"
17 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) <3
18 GROUP BY jd."Farm Id"
19),
20 comparisonCube AS (
21 SELECT jd."Farm Id",
22 AVG(bc,"Milk Yield") AS "Average Milk Yield"
23 FROM baseCube bc
24 JOIN "Farm" jd ON
25 bc."Farm" = jd."Farm Id"
26 JOIN "Animal" cd ON
27 bc."Cattle" = cd."Animal"
28 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) >=3
29 GROUP BY jd."Farm Id"
30),
31 resultCube AS (
32 SELECT ic."Farm Id",
33 ic."Average Milk Yield" AS "Group of Interest",
34 cc."Average Milk Yield" AS "Group of Comparison",
35 (ic."Average Milk Yield"/cc."Average Milk Yield") AS "Average

Milk Yield Ratio"
36 FROM interestCube ic
37 JOIN comparisonCube cc ON
38 ic."Farm Id" = cc."Farm Id"
39)
40 SELECT *
41 FROM resultCube rc
42 WHERE ABS(1-rc."Average Milk Yield Ratio") >0.2

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 184

B.5 Heterogeneous Subset-Subset Comparison

Figure B.20: Aliases, problem, and solution of the heterogeneous subset-subset comparison
pattern

Heterogeneous Subset-Subset Comparison

Also Known As
Heterogeneous Group-Group Comparison

Problem
Retrieve aggregated measure values for two specified groups of facts from two different

source cubes sharing a common dimension and granularity, which should be compared by
calculating a comparative measure.

Solution
From the ⟨iSourceCube⟩, select the relevant facts using the unary dimension predic-

ate ⟨iDimSlice⟩ over the dimension referenced by the dimension role ⟨iCompDimRole⟩ fol-
lowed by performing a roll-up according to the ⟨groupCond⟩ dimension grouping over the
dimension referenced by the ⟨iJoinDimRole⟩ dimension role and compute a unary calcu-
lated measure ⟨iCubeMeasure⟩ – the result serves as the interest cube for further analysis.

<iSourceCube>
Interest
Cube

Comparison
Cube

σ

<cSourceCube>

σ

Result
Cube

Query
Result

σ

Analogously, from the ⟨cSourceCube⟩, select the rel-
evant facts using the unary dimension predicate
⟨cDimSlice⟩ over the dimension referenced by the
dimension role ⟨cCompDimRole⟩ followed by perform-
ing a roll-up according to the ⟨groupCond⟩ dimen-
sion grouping over the dimension referenced by the
⟨cJoinDimRole⟩ dimension role and compute a un-
ary calculated measure ⟨cCubeMeasure⟩ – the result
serves as the comparison cube for further analysis. Although, the dimension role names of
⟨iJoinDimRole⟩ and ⟨cJoinDimRole⟩ can differ, they should reference the same dimension
allowing a reasonable comparison. To obtain the result cube, join the interest cube and
comparison cube over the ⟨groupCond⟩ combining the ⟨iJoinDim⟩ and ⟨cJoinDim⟩ dimension
referenced by the ⟨iJoinDimRole⟩ and the ⟨cJoinDimRole⟩ dimension roles. Finally, compute
a binary calculated measure ⟨compMeasure⟩, then return only the results satisfying the unary
cube predicate ⟨compAggrCond⟩ cube predicate.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 185

Figure B.21: Context and a template for heterogeneous subset-subset comparison (continued
from Figure B.20)

Context

<iSourceCube>

<iCompDimRole>

 <iJoinDim>

<iJoinDimRole>

 <iCompDim>

<cSourceCube>

 <cJoinDim>

<cJoinDimRole>

 <cCompDim>

<cCompDimRole>

<iDimSlice>

<ctx>

<groupCond>1 1

<ctx>

<ctx>[2]<ctx>[1]

 <iCubeMeasure>:/<iCubeMeasureDom>

interestCube

 <cCubeMeasure>:/<cCubeMeasureDom>

comparisonCube

<compMeasure>2

<ctx>

 <compMeasure>:/<compMeasureDom>

resultCube

<compAggrCond>2

<ctx>

<groupCond>1 <cDimSlice>1

<ctx>

<ctx> <iCubeMeasure>1

/<iCubeMeasureDom>

 <cCubeMeasure>1

/<cCubeMeasureDom>

<ctx>

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH interestCube AS (
2 SELECT $expr(<groupCond >, ijd),
3 $expr(<iCubeMeasure >, isc) AS <iCubeMeasure >
4 FROM <iSourceCube > isc
5 JOIN <iCompDim > icd ON
6 isc.<iCompDimRole >=icd.$dimKey(<iCompDim >)
7 JOIN <iJoinDim > ijd ON
8 isc.<iJoinDimRole >=ijd.$dimKey(<iJoinDim >)
9 WHERE $expr(<iDimSlice >, icd)

10 GROUP BY $expr(<groupCond >, ijd)
11),
12 comparisonCube AS (
13 SELECT $expr(<groupCond >, cjd),
14 $expr(<cCubeMeasure >, csc) AS <cCubeMeasure >
15 FROM <cSourceCube > csc
16 JOIN <cCompDim > ccd ON
17 csc.<cCompDimRole >=ccd.$dimKey(<cCompDim >)
18 JOIN <cJoinDim > cjd ON
19 csc.<cJoinDimRole >=cjd.$dimKey(<cJoinDim >)
20 WHERE $expr(<cDimSlice >, ccd)
21 GROUP BY $expr(<groupCond >, cjd)
22),
23 resultCube AS (
24 SELECT $expr(<groupCond >, ic),
25 ic.<cubeMeasure > AS "Group of Interest",
26 cc.<cubeMeasure > AS "Group of Comparison",
27 $expr(<compMeasure >, ic, cc) AS <compMeasure >
28 FROM interestCube ic
29 JOIN comparisonCube cc ON
30 $expr(<groupCond >, ic) = $expr(<groupCond >, cc)
31)
32
33 SELECT *
34 FROM resultCube rc
35 WHERE $expr(<compAggrCond >, rc)

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 186

Figure B.22: Related patterns and an example for heterogeneous subset-subset comparison
(continued from Figure B.21)

Related Patterns
Homogeneous Subset-Subset Comparison

Example
Consider dairy company Happy Milk, which consists of three farms located at different

sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments.

Milking Time

Average Feed Efficiency

<ctx>[1]:Cube, <ctx>[2]:Cube

(<ctx>[1]."Average Milk Yield"/

<ctx>[2]."Average Feed Consumption")

<ctx1>."Average Milk Yield":"Liquid In Liter",
<ctx2>."Average Feed Consumption":"Roughage In Kilogram"

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm

Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id: Ssn

Calving

Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

"Liquid In Liter Per Roughage In Kilogram"

High Average Feed Efficiency

<ctx>:Cube

<ctx>."Average Feed Efficiency":
"Liquid In Liter Per Roughage In Kilogram"

<ctx>."Average Feed Efficiency" > 1.8

 Feed Consumption : Roughage In Kilogram

Feeding

Cattle

Farm

Date:
Date

Month:
Month No

Year:
Year No

Time
Month Label:
Month Name

Feeding Time

 <ctx> has Measure "Feed Consumption",
<ctx>."Feed Consumption":

"Roughage In Kilogram"

AVG(<ctx>."Feed Consumption")

<ctx>:Cube

 Average Feed Consumption

"Roughage In Kilogram"

<ctx>

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm

<ctx>

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

1

1

1

2

1

<ctx>."Date":"Date"

TO_CHAR(<ctx>.DATE, 'YYYYMMDD')

= '20200607'

<ctx>:Dimension

2020.06.071

<ctx>."Date":"Date"

TO_CHAR(<ctx>.DATE, 'YYYYMMDD')

= '20200608'

<ctx>:Dimension

2020.06.081

<ctx>

<ctx>
Cattle

In precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., microclimate in the barns (temperature and
moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 187

Figure B.23: Example for heterogeneous subset-subset comparison (continued from Fig-
ure B.22)

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.
In addition, Happy Milk’s Feeding cube captures for analysis purposes aggregated data
about feeding events quantified by the measure Feed Consumption (in kilogram); value set
Roughage In Kilogram is the type Feed Consumption, respectively. Hence, the cube records
feeding on a daily basis per animal and farm.

Happy Milk wants to detect farms that are highly efficient in terms of produced amount
of milk and the used resources. A BI user may start the identification of highly efficient
farms with the computation of the ratio between the average milk yield of one day and the
average consumed feed the day before. On a more abstract level, that query corresponds to
heterogeneous subset-subset comparison, i.e., the computation of a ratio between measure
values for two subsets of facts originating from two different cubes, each group distinguished
according to specified characteristics – in this case, the date of milk production and feed
consumption.

To obtain an executable OLAP query based on the heterogeneous subset-subset compar-
ison pattern, the pattern user (BI user) simply binds names of available eMDM elements
for each pattern parameter during pattern instantiation. In the Happy Milk scenario, the
cube name Milking, which refers to the cube that tracks milk yield of farms in the Happy
Milk eMDM, is bound to ⟨iSourceCube⟩ – it is restricted by the unary dimension predicate
name 2020.06.08 bound to the parameter ⟨iDimSlice⟩. The unary calculated measure
Average Milk Yield is bound to ⟨iCubeMeasure⟩ and aggregated by binding Per Farm to
⟨groupCond⟩ that applies to a dimension referred to by the dimension role Farm bound to
⟨iJoinDimRole⟩. Analogously, the cube name Feeding, which refers to the cube that tracks
feeding of farms in the Happy Milk eMDM, is bound to ⟨cSourceCube⟩ – it is restricted
by the unary dimension predicate name 2020.06.07 bound to the parameter ⟨cDimSlice⟩.
The unary calculated measure Average Feed Consumption is bound to ⟨cCubeMeasure⟩ and
aggregated by binding Per Farm to ⟨groupCond⟩ that applies to a dimension referred to by the
dimension role Farm bound to ⟨cJoinDimRole⟩. Finally, Average Feed Efficiency is bound
to the binary calculated measure ⟨compMeasure⟩, while High Average Feed Efficiency is
bound to ⟨compAggrCond⟩.

APPENDIX B. DOMAIN-INDEPENDENT PATTERN CATALOG 188

Figure B.24: Example for heterogeneous subset-subset comparison (continued from Fig-
ure B.23)

With parameters for the heterogeneous subset-subset comparison bound as before,
pattern grounding over the Happy Milk eMDM yields an applicable ground pattern that is
executed resulting in the SQL query shown below, which compares per farm the average
milk yield on June 8th, 2020 with the average food consumed the day before, showing only
results of a high feeding efficiency.

1 WITH interestCube AS (
2 SELECT ijd."Farm Id",
3 AVG(isc."Milk Yield") AS "Average Milk Yield"
4 FROM "Milking" isc
5 JOIN "Time" icd ON
6 isc."Milking Time"=icd."Date"
7 JOIN "Animal" ijd ON
8 isc."Cattle"=ijd."Animal"
9 WHERE TO_DATE(icd."Date",'YYYYMMDD ') = '20200608 '

10 GROUP BY ijd."Farm Id"
11),
12 comparisonCube AS (
13 SELECT cjd."Farm Id",
14 AVG(csc."Feed Consumption") AS "Average Feed Consumption"
15 FROM "Feeding" csc
16 JOIN "Time" ccd ON
17 csc."Feeding Time"=ccd."Date"
18 JOIN "Animal" cjd ON
19 csc."Cattle"=cjd."Animal"
20 WHERE TO_DATE(ccd."Date",'YYYYMMDD ') = '20200607 '
21 GROUP BY cjd."Farm Id",
22),
23 resultCube AS (
24 SELECT ic."Farm Id",
25 ic."Average Milk Yield" AS "Group of Interest",
26 cc."Average Feed Consumption" AS "Group of Comparison",
27 (ic."Average Milk Yield"/cc."Average Feed Consumption") AS

"Average Feed Efficiency"
28 FROM interestCube ic
29 JOIN comparisonCube cc ON
30 ic."Farm Id" = cc."Farm Id"
31)
32
33 SELECT *
34 FROM resultCube rc
35 WHERE rc."Average Feed Efficiency" > 1.8

Appendix C
Domain-Specific Sample Pattern

From the AgriProKnow Use Case

The running example of the Happy Milk used in this thesis is inspired by the experience we
gained during the agriProKnow project, which was funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under the “Production of the Future”
program between September 2015 and January 2018 (Grant 848610). The OLAP pattern
used in the running example describes a race-specific subset-to-subset comparison and is
described in detail in Listings Figure C.1 through Figure C.5. These figures comprise the
aliases, the problem considered, the solution to be followed, the context defining the contract
to be fulfilled, a template linking the pattern to its implementation, related patterns, and a
detailed example.

189

APPENDIX C. DOMAIN-SPECIFIC SAMPLE PATTERN FROM THE AGRIPROKNOW
USE CASE 190
Figure C.1: Aliases, problem, solution, and context of the breed-specific subset-subset
comparison pattern

Breed-Specific Subset-Subset Comparison

Also Known As
Breed-Specific Cattle Group to Cattle Group Comparison

Problem
Retrieve aggregated measure values for two specified groups of facts about cattle relating

to a specific breed from a single source cube, which should be compared by calculating a
comparative measure.

Solution
From the ⟨sourceCube⟩, select the set of relevant facts using the unary cube

predicate ⟨baseCubeSlice⟩ and dimension predicate ⟨baseDimSlice⟩, which selects
over the Main Breed level of a dimension ⟨baseDim⟩ referenced by the dimen-
sion role Cattle – the result serves as the base cube for further analysis.

Interest
Cube

Comparison
Cube

σ

σ
Query
Result

σ

Base
Cube

<sourceCube>

From that base cube, select interest cube and comparison
cube using conditions over the dimension role ⟨compDimRole⟩
according to the unary dimension predicates ⟨iDimSlice⟩ and
⟨cDimSlice⟩, respectively. Perform a roll-up for interest and
comparison cube according to the ⟨groupCond⟩ dimension group-
ing over the ⟨joinDim⟩ dimension referenced by the dimension
role ⟨joinDimRole⟩ and compute a unary calculated measure
⟨cubeMeasure⟩. To obtain the query result cube, join the in-
terest cube and comparison cube over the ⟨groupCond⟩ dimension grouping and compute a
binary calculated comparative measure ⟨compMeasure⟩.

Context

<ctx>
<sourceCube>

Cattle
<ctx>

<compDim>

<compDimRole><compDimRole>

 <joinDim>

<joinDimRole>

 <compDim>

 <baseCubeSlice>

<iDimSlice> <cDimSlice>

/<baseDim>

<baseDimSlice>

<ctx>

 <cubeMeasure>

<ctx>

<groupCond>

Main Breed:
Breed Name

1

1

1 1 1

1

<ctx> <ctx>

<ctx>[2]<ctx>[1]
 <cubeMeasure>:/<cubeMeasureDom>

interestCube

 <cubeMeasure>:/<cubeMeasureDom>

comparisonCube

/<cubeMeasureDom>

<compMeasure>2

APPENDIX C. DOMAIN-SPECIFIC SAMPLE PATTERN FROM THE AGRIPROKNOW
USE CASE 191

Figure C.2: A template and related patterns for breed-specific subset-subset comparison
(continued from Figure C.1)

Template (Data Model: Relational, Variant: Star Schema, Language: SQL, Dialect: ORACLEv11)

1 WITH baseCube AS (
2 SELECT *
3 FROM <sourceCube > sc
4 JOIN <baseDim > a ON
5 sc."Cattle"=a.$dimKey(<baseDim >)
6 WHERE $expr(<baseCubeSlice >, sc) AND
7 $expr(<baseDimSlice >, a)
8),
9 interestCube AS (

10 SELECT $expr(<groupCond >, jd),
11 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
12 FROM baseCube bc
13 JOIN <joinDim > jd ON
14 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
15 JOIN <compDim > cd ON
16 bc.<compDimRole >=cd.$dimKey(<compDim >)
17 WHERE $expr(<iDimSlice >, cd)
18 GROUP BY $expr(<groupCond >, jd)
19),
20 comparisonCube AS (
21 SELECT $expr(<groupCond >, jd),
22 $expr(<cubeMeasure >, bc) AS <cubeMeasure >
23 FROM baseCube bc
24 JOIN <joinDim > jd ON
25 bc.<joinDimRole >=jd.$dimKey(<joinDim >)
26 JOIN <compDim > cd ON
27 bc.<compDimRole >=cd.$dimKey(<compDim >)
28 WHERE $expr(<cDimSlice >, cd)
29 GROUP BY $expr(<groupCond >, jd)
30)
31 SELECT $expr(<groupCond >, ic),
32 ic.<cubeMeasure > AS "Group of Interest",
33 cc.<cubeMeasure > AS "Group of Comparison",
34 $expr(<compMeasure >, ic, cc) AS <compMeasure >
35 FROM interestCube ic
36 JOIN comparisonCube cc ON
37 $expr(<groupCond >, ic)=$expr(<groupCond >, cc)

Related Patterns
Diary- and Breed-Specific Subset-Subset Comparison, Homogeneous Subset-Subset

Comparison

APPENDIX C. DOMAIN-SPECIFIC SAMPLE PATTERN FROM THE AGRIPROKNOW
USE CASE 192

Figure C.3: Example for breed-specific subset-subset comparison (continued from Figure C.2)

Example

Consider dairy company Happy Milk, which consists of three farms located at different
sites, tending to a herd of about a thousand animals in total, half of which are Holstein
breed, the other half Jersey breed. Happy Milk runs its farms as precision dairy farming
operations aiming to increase efficiency and reduce losses due to animal illness through
monitoring the animals’ health status and proactively induce necessary treatments. In
precision dairy farming, animals are typically monitored using a wide range of sensors
capturing a multitude of data concerning, e.g., microclimate in the barns (temperature and
moisture, among others), animal movement within farms, food consumption, milk yield
and composition of the produced milk, and information about calvings. Data gathered by
various sensors are integrated into a relational data warehouse system realized using a star
schema which is conceptually represented using entities and properties in a multidimensional
model.

<ctx>."Date Of Birth":"Date"

trunc((SYSDATE–<ctx>.

"Date Of Birth")/365.25)>=3

<ctx>:Dimension

Old Cattle1

<ctx>
Date:
Date Month:

Month No
Year:

Year No

Milking Time

Time Month Label:
Month Name

<ctx>

<ctx>

Mid Lactation Phase

<ctx>."Lactation":"No Of Days"

<ctx>."Lactation" BETWEEN 100

AND 200

<ctx>:Cube

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm

<ctx>

<ctx>[1] <ctx>[2]

Average Milk Yield Ratio

<ctx>[1]:Cube, <ctx>[2]:Cube

AVG(<ctx>[1]."Milk Yield")/

AVG(<ctx>[2]."Milk Yield")

<ctx>[1] has Measure "Milk Yield",
<ctx>[1]."Milk Yield":"Liquid In Liter",
<ctx>[2] has Measure "Milk Yield",

<ctx>[2]."Milk Yield":"Liquid In Liter"

<ctx>."Main Breed":"Breed Name"

<ctx>."Main Breed"="Holstein"

<ctx>:Dimension

Holstein

<ctx>."Date Of Birth":"Date"

trunc((SYSDATE–<ctx>.

"Date Of Birth")/365.25)<3

<ctx>:Dimension

Young Cattle

<ctx>

Lactation

 Milk Yield: Liquid In Liter
 Fat Content: Percent Per Liter

Milking

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm

Farm Cattle

Main Breed:
Breed Name

Animal

Dam:
Animal CodeEnterprise Id: Ssn

Calving

Lactation

Day Of Lactation:
No Of Days

Calving

Calving No:
No Of Births

Animal:
Animal CodeTown: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

<ctx>

<ctx> has Measure "Milk Yield",
<ctx>."Milk Yield":"Liquid In Liter"

AVG(<ctx>."Milk Yield")

<ctx>:Cube

Average Milk Yield

"Liquid In Liter"

"Rational Number"

1

1

1

2 1

1

Happy Milk’s Milking cube captures for analysis purposes aggregated data about milking
events quantified by the measures Milk Yield (in liters) and Fat Content (as percentage);
value sets Liquid In Liter and Percent Per Liter are the types of Milk Yield and Fat

Content, respectively. Hence, the cube records milk yield and fat content on a daily basis
per animal and farm as well as calving period and phase in the animal’s lactation cycle.

APPENDIX C. DOMAIN-SPECIFIC SAMPLE PATTERN FROM THE AGRIPROKNOW
USE CASE 193

Figure C.4: Example for breed-specific subset-subset comparison (continued from Figure C.3)

Happy Milk detects a drop in the milk yield of Holstein cattle. A decrease in milk yield
may have many reasons but, first of all, the affected Holstein population must be identified.
A BI user may start the investigation by calculating the ratio between the average milk yield
of young Holstein cattle and the average milk yield of old Holstein cattle, considering only
animals with in their mid lactation phase. On a more abstract level, that query corresponds
to breed-specific subset-subset comparison: computation of a ratio between the average
measure values for each subset of facts referring to a certain breed – in this case, Holstein –
where each group is distinguished according to specified characteristics – in this case, young
and old.

To obtain an executable OLAP query using the breed-specific subset-subset comparison
pattern, the pattern user (BI user) simply binds names of available eMDM elements for
each pattern parameter during pattern instantiation. In the Happy Milk scenario, the cube
name Milking, which in the Happy Milk eMDM refers to a cube that captures milk yield
at farms, is bound to ⟨sourceCube⟩. The Milking cube in the Happy Milk eMDM has a
dimension role Cattle that references a dimension Animal as its domain and thus satisfies
the domain and property constraints defined for the cube to be bound to ⟨sourceCube⟩.
The name Holstein, which refers to a unary dimension predicate, is bound to the parameter
⟨baseDimSlice⟩ whereas the unary cube predicate name Mid Lactation Phase is bound to
the parameter ⟨baseCubeSlice⟩. The ⟨compDimRole⟩ parameter is set to the name Cattle

since that role refers to a dimension which can be used for further restriction. The groups of
facts that are to be compared are specified by the Young Cattle unary dimension predicate
for the ⟨iDimSlice⟩ and the Old Cattle unary dimension predicate for the ⟨cDimSlice⟩.
Since the groups should be compared per farm the Farm dimension role is specified as
the ⟨joinDimRole⟩ while the ⟨groupCond⟩ parameter is assigned the Per Farm dimension
grouping predicate. The Average Milk Yield for the ⟨cubeMeasure⟩ indicates the unary
calculated measure to be calculated per group. Finally, the Average Milk Yield Ratio for
the ⟨compMeasure⟩ indicates the comparative binary calculated measure.

With parameters for the breed-specific subset-subset comparison bound as in the previous
example, pattern grounding over the Happy Milk eMDM yields an applicable ground pattern
that is executed resulting in the SQL query, which compares per farm the average milk
yield of cattle younger than three years that are in their mid lactation phase with cattle
older than three years that are in their mid lactation phase, by calculating the ratio over
the average milk yield per group.

APPENDIX C. DOMAIN-SPECIFIC SAMPLE PATTERN FROM THE AGRIPROKNOW
USE CASE 194

Figure C.5: Example for breed-specific subset-subset comparison (continued from Figure C.4)

1 WITH baseCube AS (
2 SELECT *
3 FROM "Milking" sc
4 JOIN "Animal" a ON
5 sc."Cattle" = a."Animal"
6 WHERE sc."Lactation" BETWEEN 100 AND 200 AND
7 a."Main Breed" = "Holstein"
8),
9 interestCube AS (

10 SELECT jd."Farm Id",
11 AVG(bc."Milk Yield") AS "Average Milk Yield"
12 FROM baseCube bc
13 JOIN "Farm" jd ON
14 bc."Farm" = jd."Farm Id"
15 JOIN "Animal" cd ON
16 bc."Cattle" = cd."Animal"
17 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) <3
18 GROUP BY jd."Farm Id"
19),
20 comparisonCube AS (
21 SELECT jd."Farm Id",
22 AVG(bc."Milk Yield") AS "Average Milk Yield"
23 FROM baseCube bc
24 JOIN "Farm" jd ON
25 bc."Farm" = jd."Farm Id"
26 JOIN "Animal" cd ON
27 bc."Cattle" = cd."Animal"
28 WHERE trunc((SYSDATE -cd."Date Of Birth")/365.25) >=3
29 GROUP BY jd."Farm Id"
30),
31 SELECT ic."Farm Id",
32 ic."Average Milk Yield" AS "Group of Interest",
33 cc."Average Milk Yield" AS "Group of Comparison",
34 (ic."Average Milk Yield"/cc."Average Milk Yield") AS "Average

Milk Yield Ratio"
35 FROM interestCube ic
36 JOIN comparisonCube cc ON
37 ic."Farm Id" = cc."Farm Id"

Appendix D
Fully-Worked Organization-Specific

Running Example of the Thesis

The usage scenario described in Section 8.4 shows only a few statements required to define
the cubes, dimensions, and business terms for subsequent pattern definition and usage. A
complete set of the required statements to be executed is shown as follows: Listing D.1
represents the statements to define the organization of the repository; Listing D.2 represents
the statements to define the dimensions and cubes; Listing D.3 represents the statements
for defining the required business terms; and Listing D.4 represents the definition of the
pattern to be used. It should be noted that a full definition is provided for business terms
and the pattern, that is, both a description and a template are defined.

195

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 196

Listing D.1: Happy Milk’s repository organization
1 CREATE REPOSITORY "Happy Milk";

2 CREATE CATALOGUE "Happy Milk"/"Happy Milk Catalog";

3 CREATE GLOSSARY "Happy Milk"/"Happy Milk Vocabulary";

4 CREATE MULTIDIMENSIONAL_MODEL "Happy Milk"/"Happy Milk MDM";

Listing D.2: Happy Milk’s dimension and cube definitions
1 -- ANIMAL DIMENSION

2 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Animal" WITH

3 LEVEL PROPERTIES

4 "Animal":"Animal Code";

5 "Date Of Birth":"Date";

6 "Main Breed":"Breed Name";

7 "Dam":"Animal Code";

8 END LEVEL PROPERTIES;

9

10 ATTRIBUTE PROPERTIES

11 "Animal Name":"Name";

12 END ATTRIBUTE PROPERTIES;

13

14 CONSTRAINTS

15 "Animal" ROLLS_UP_TO "Date Of Birth";

16 "Animal" ROLLS_UP_TO "Main Breed";

17 "Animal" ROLLS_UP_TO "Dam";

18 "Animal" DESCRIBED_BY "Animal Name";

19 END CONSTRAINTS;

20 END DIMENSION;

21

22 -- TIME DIMENSION

23 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Time" WITH

24 LEVEL PROPERTIES

25 "Date":"Date";

26 "Month":"Month No";

27 "Year":"Year No";

28 END LEVEL PROPERTIES;

29

30 ATTRIBUTE PROPERTIES

31 "Month Label":"Month Name";

32 END ATTRIBUTE PROPERTIES;

33

34 CONSTRAINTS

35 "Date" ROLLS_UP_TO "Month";

36 "Month" ROLLS_UP_TO "Year";

37 "Month" DESCRIBED_BY "Month Label";

38 END CONSTRAINTS;

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 197

39 END DIMENSION;

40

41 -- LACTATION DIMENSION

42 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Lactation" WITH

43 LEVEL PROPERTIES

44 "Day Of Lactation":"No Of Days";

45 END LEVEL PROPERTIES;

46 END DIMENSION;

47

48 -- CALVING DIMENSION

49 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Calving" WITH

50 LEVEL PROPERTIES

51 "Calving No":"No Of Births";

52 END LEVEL PROPERTIES;

53 END DIMENSION;

54

55 -- FARM DIMENSION

56 CREATE DIMENSION "Happy Milk"/"Happy Milk MDM"/"Farm" WITH

57 LEVEL PROPERTIES

58 "Farm Id":"Farm Code";

59 "Enterprise Id":"Ssn";

60 "Town Id":"Zip Code";

61 "Province":"Province Name";

62 "State":"State Name";

63 END LEVEL PROPERTIES;

64

65 ATTRIBUTE PROPERTIES

66 "Town":"Town Name";

67 END ATTRIBUTE PROPERTIES;

68

69 CONSTRAINTS

70 "Farm Id" ROLLS_UP_TO "Enterprise Id";

71 "Farm Id" ROLLS_UP_TO "Town Id";

72 "Town Id" ROLLS_UP_TO "Province";

73 "Province" ROLLS_UP_TO "State";

74 "Town Id" DESCRIBED_BY "Town";

75 END CONSTRAINTS;

76 END DIMENSION;

77

78 -- MILKING CUBE

79 CREATE CUBE "Happy Milk"/"Happy Milk MDM"/"Milking" WITH

80 MEASURE PROPERTIES

81 "Milk Yield":"Liquid In Liter";

82 "Fat Content":"Percent Per Liter";

83 END MEASURE PROPERTIES;

84

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 198

85 DIMENSION_ROLE PROPERTIES

86 "Farm":"Farm";

87 "Calving":"Calving";

88 "Lactation":"Lactation";

89 "Milking Time":"Time";

90 "Cattle":"Animal";

91 END DIMENSION_ROLE PROPERTIES;

92 END CUBE;

Listing D.3: Happy Milk’s business term definitions
1 -- LOW DAILY MILK YIELD BUSINESS TERM

2 CREATE UNARY_CUBE_PREDICATE "Happy Milk"/"Happy Milk Vocabulary"/"Low

Daily Milk Yield" WITH

3 CONSTRAINTS

4 <ctx >."Milk Yield":"Liquid In Liter";

5 END CONSTRAINTS;

6 END UNARY_CUBE_PREDICATE;

7

8 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Low

Daily Milk Yield" WITH

9 LANGUAGE = "English";

10 ALIAS = "Daily Milk Yield Below Average";

11 DESCRIPTION = "A cattle has a low dailymilk yield if its milk yield for

a specific day is lower than 7.4";

12 END TERM DESCRIPTION;

13

14 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Low Daily

Milk Yield" WITH

15 LANGUAGE = "SQL" ;

16 DIALECT = "ORACLEv11" ;

17 EXPRESSION = "*{ <ctx >.""Milk Yield"" < 7.4 }*";

18 END TERM TEMPLATE;

19

20

21 -- AVERAGE MILK YIELD BUSINESS TERM

22 CREATE UNARY_CALCULATED_MEASURE "Happy Milk"/"Happy Milk

Vocabulary"/"Average Milk Yield" WITH

23

24 CONSTRAINTS

25 <ctx > HAS MEASURE "Milk Yield";

26 <ctx >."Milk Yield":"Liquid In Liter";

27 END CONSTRAINTS;

28

29 RETURNS "Liquid In Liter";

30

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 199

31 END UNARY_CALCULATED_MEASURE;

32

33 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Average

Milk Yield" WITH

34 LANGUAGE = "English";

35 ALIAS = "Average Milk Production";

36 DESCRIPTION = "The average milk yield production";

37 END TERM DESCRIPTION;

38

39 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Average

Milk Yield" WITH

40 LANGUAGE = "SQL" ;

41 DIALECT = "ORACLEv11" ;

42 EXPRESSION = "*{ AVG(<ctx >.""Milk Yield"") }*";

43 END TERM TEMPLATE;

44

45

46 -- AVERAGE MILK YIELD RATIO BUSINESS TERM

47 CREATE BINARY_CALCULATED_MEASURE "Happy Milk"/"Happy Milk

Vocabulary"/"Average Milk Yield Ratio" WITH

48 CONSTRAINTS

49 <ctx >[1] HAS MEASURE "Average Milk Yield";

50 <ctx >[1]."Average Milk Yield":"Liquid In Liter";

51 <ctx >[2] HAS MEASURE "Average Milk Yield";

52 <ctx >[2]."Average Milk Yield":"Liquid In Liter";

53 END CONSTRAINTS;

54

55 RETURNS "Rational Number";

56 END BINARY_CALCULATED_MEASURE;

57

58 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Average

Milk Yield Ratio" WITH

59 LANGUAGE = "English";

60 ALIAS = "Average Milk Production Ratio";

61 DESCRIPTION = "The ratio of the average milk yield production";

62 END TERM DESCRIPTION;

63

64 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Average

Milk Yield Ratio" WITH

65 LANGUAGE = "SQL";

66 DIALECT = "ORACLEv11";

67 EXPRESSION = "*{ <ctx >[1].""Average Milk Yield"")/<ctx >[2].""Average

Milk Yield"" }*";

68 END TERM TEMPLATE;

69

70

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 200

71 -- HIGH AVERAGE MILK YIELD RATIO BUSINESS TERM

72 CREATE UNARY_CUBE_PREDICATE "Happy Milk"/"Happy Milk Vocabulary"/"High

Average Milk Yield Ratio" WITH

73 CONSTRAINTS

74 <ctx >."Average Milk Yield Ratio":"Liquid In Liter";

75 END CONSTRAINTS;

76 END UNARY_CUBE_PREDICATE;

77

78 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"High

Average Milk Yield Ratio" WITH

79 LANGUAGE = "English";

80 ALIAS = "Average Milk Production Ratio Over 20%";

81 DESCRIPTION = "The ratio of the average milk yield production exceeds

20%";

82 END TERM DESCRIPTION;

83

84 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"High

Average Milk Yield Ratio" WITH

85 LANGUAGE = "SQL" ;

86 DIALECT = "ORACLEv11" ;

87 EXPRESSION = "*{ <ctx >.""Average Milk Yield Ratio""=>0.2 }*";

88 END TERM TEMPLATE;

89

90 -- YOUNG CATTLE BUSINESS TERM

91 CREATE UNARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk

Vocabulary"/"Young Cattle" WITH

92 CONSTRAINTS

93 <ctx >."Date Of Birth":"Date";

94 END CONSTRAINTS;

95 END UNARY_DIMENSION_PREDICATE;

96

97 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Young

Cattle" WITH

98 LANGUAGE = "English";

99 ALIAS = "Young Cow";

100 DESCRIPTION = "A cow is young if its age in years is lower than three";

101 END TERM DESCRIPTION;

102

103 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Young

Cattle" WITH

104 LANGUAGE = "SQL" ;

105 DIALECT = "ORACLEv11" ;

106 EXPRESSION = "*{ trunc((SYSDATE - <ctx >.""Date Of Birth"")/365.25) < 3

}*";

107 END TERM TEMPLATE;

108

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 201

109 -- OLD CATTLE BUSINESS TERM

110 CREATE UNARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk Vocabulary"/"Old

Cattle" WITH

111 CONSTRAINTS

112 <ctx >."Date Of Birth":"Date";

113 END CONSTRAINTS;

114 END UNARY_DIMENSION_PREDICATE;

115

116 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Old

Cattle" WITH

117 LANGUAGE = "English";

118 ALIAS = "Old Cow";

119 DESCRIPTION = "A cow is old if its age in years is greater equals than

three";

120 END TERM DESCRIPTION;

121

122 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Old Cattle"

WITH

123 LANGUAGE = "SQL" ;

124 DIALECT = "ORACLEv11" ;

125 EXPRESSION = "*{ trunc((SYSDATE - <ctx >.""Date Of Birth"")/365.25) >= 3

}*";

126 END TERM TEMPLATE;

127

128

129 -- HOLSTEIN BUSINESS TERM

130 CREATE UNARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk

Vocabulary"/"Holstein" WITH

131 CONSTRAINTS

132 <ctx >."Main Breed":"Breed Name";

133 END CONSTRAINTS;

134 END UNARY_DIMENSION_PREDICATE;

135

136 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk

Vocabulary"/"Holstein" WITH

137 LANGUAGE = "English";

138 ALIAS = "Cattle Breed Holstein";

139 DESCRIPTION = "Restriction of result to cattle of main breed holstein";

140 END TERM DESCRIPTION;

141

142 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Holstein"

WITH

143 LANGUAGE = "SQL" ;

144 DIALECT = "ORACLEv11" ;

145 EXPRESSION = "*{ <ctx >.""Main Breed"" = ""Holstein"" }*";

146 END TERM TEMPLATE;

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 202

147

148

149 -- PER FARM BUSINESS TERM

150 CREATE DIMENSION_GROUPING "Happy Milk"/"Happy Milk Vocabulary"/"Per Farm"

WITH

151 CONSTRAINTS

152 <ctx >."Farm Id":"Farm Code";

153 END CONSTRAINTS;

154 END DIMENSION_GROUPING;

155

156 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Per

Farm" WITH

157 LANGUAGE = "English";

158 ALIAS = "Aggregate At Farm Level";

159 DESCRIPTION = "Rollup to the Farm level";

160 END TERM DESCRIPTION;

161

162 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Per Farm"

WITH

163 LANGUAGE = "SQL" ;

164 DIALECT = "ORACLEv11" ;

165 EXPRESSION = "*{ <ctx >.""Farm Id"" }*";

166 END TERM TEMPLATE;

167

168

169 -- SAME FARM BUSINESS TERM

170 CREATE BINARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk

Vocabulary"/"Same Farm" WITH

171 CONSTRAINTS

172 <ctx >[1] HAS LEVEL "Farm Id";

173 <ctx >[1]."Farm Id":"Farm Code";

174 <ctx >[2] HAS LEVEL "Farm Id";

175 <ctx >[2]."Farm Id":"Farm Code";

176 END CONSTRAINTS;

177 END BINARY_DIMENSION_PREDICATE;

178

179 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Same

Farm" WITH

180 LANGUAGE = "English";

181 ALIAS = "Join Over Farm", "Join By Farm";

182 DESCRIPTION = "Combine same farm levels";

183 END TERM DESCRIPTION;

184

185 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Same Farm"

WITH

186 LANGUAGE = "SQL" ;

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 203

187 DIALECT = "ORACLEv11" ;

188 EXPRESSION = "*{ <ctx >[1].""Farm Id"" = <ctx >[2].""Farm Id"" }*";

189 END TERM TEMPLATE;

190

191

192 -- TOWN ASC BUSINESS TERM

193 CREATE DIMENSION_ORDERING "Happy Milk"/"Happy Milk Vocabulary"/"Town ASC"

WITH

194 CONSTRAINTS

195 <ctx >."Town":"Town Name";

196 END CONSTRAINTS;

197 END DIMENSION_ORDERING;

198

199 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Town

ASC" WITH

200 LANGUAGE = "English";

201 ALIAS = "Town Ascending";

202 DESCRIPTION = "Order result according to the town name in an ascending

way";

203 END TERM DESCRIPTION;

204

205 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Town ASC"

WITH

206 LANGUAGE = "SQL" ;

207 DIALECT = "ORACLEv11" ;

208 EXPRESSION = "*{ <ctx >.""Town"" }*";

209 END TERM TEMPLATE;

210

211

212 -- SEPTEMBER BUSINESS TERM

213 CREATE UNARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk

Vocabulary"/"September" WITH

214 CONSTRAINTS

215 <ctx >."Month Label":"Month Name";

216 END CONSTRAINTS;

217 END UNARY_DIMENSION_PREDICATE;

218

219 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk

Vocabulary"/"September" WITH

220 LANGUAGE = "English";

221 ALIAS = "Month September";

222 DESCRIPTION = "Restrict result to the month September";

223 END TERM DESCRIPTION;

224

225 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"September"

WITH

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 204

226 LANGUAGE = "SQL" ;

227 DIALECT = "ORACLEv11" ;

228 EXPRESSION = "*{ <ctx >.""Month Label"" = ""September"" }*";

229 END TERM TEMPLATE;

230

231

232 -- UNDER HEAT STRESS BUSINESS TERM

233 CREATE BINARY_DIMENSION_PREDICATE "Happy Milk"/"Happy Milk

Vocabulary"/"Under Heat Stress" WITH

234 CONSTRAINTS

235 <ctx >[1]."Animal":"Animal Code";

236 <ctx >[2]."Date":"Date";

237 END CONSTRAINTS;

238 END BINARY_DIMENSION_PREDICATE;

239

240 CREATE TERM DESCRIPTION FOR "Happy Milk"/"Happy Milk Vocabulary"/"Under

Heat Stress" WITH

241 LANGUAGE = "English";

242 ALIAS = "Heat Stress";

243 DESCRIPTION = "Any time the Temperature -Humidity Index (THI) is above 80

cattle will be under heat stress";

244 END TERM DESCRIPTION;

245

246 CREATE TERM TEMPLATE FOR "Happy Milk"/"Happy Milk Vocabulary"/"Under Heat

Stress" WITH

247 LANGUAGE = "SQL" ;

248 DIALECT = "ORACLEv11" ;

249 EXPRESSION = "*{ (<ctx >[1].""Animal"", <ctx >[2].""Date"") IN SELECT *

FROM ""Under Heat Stress"") }*";

250 END TERM TEMPLATE;

Listing D.4: Happy Milk’s pattern definitions
1 CREATE PATTERN "Happy Milk"/"Happy Milk Catalog"/"Breed -Specific

Subset -Subset Comparison" WITH

2 PARAMETERS

3 <sourceCube >:CUBE;

4 <baseCubeSlice >: UNARY_CUBE_PREDICATE;

5 <animalBreedSlice >: UNARY_DIMENSION_PREDICATE;

6 <compDimRole >: DIMENSION_ROLE;

7 <iDimSlice >: UNARY_DIMENSION_PREDICATE;

8 <cDimSlice >: UNARY_DIMENSION_PREDICATE;

9 <joinDimRole >: DIMENSION_ROLE;

10 <groupCond >: DIMENSION_GROUPING;

11 <cubeMeasure >: UNARY_CALCULATED_MEASURE;

12 <compMeasure >: BINARY_CALCULATED_MEASURE;

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 205

13 END PARAMETERS;

14

15 DERIVED ELEMENTS

16 <compDim >: DIMENSION <= <sourceCube >.<compDimRole >;

17 <joinDim >: DIMENSION <= <sourceCube >.<joinDimRole >;

18 <cubeMeasureDom >: NUMBER_VALUE_SET <= <cubeMeasure >. RETURNS;

19 END DERIVED ELEMENTS;

20

21 LOCAL CUBES

22 "interestCube":CUBE;

23 "interestCube" HAS MEASURE <cubeMeasure >;

24 "interestCube".<cubeMeasure >:<cubeMeasureDom >;

25 "comparisonCube":CUBE;

26 "comparisonCube" HAS MEASURE <cubeMeasure >;

27 "comparisonCube".<cubeMeasure >:<cubeMeasureDom >;

28 END LOCAL CUBES;

29

30 CONSTRAINTS

31 <sourceCube > HAS DIMENSION_ROLE "Cattle";

32 <sourceCube > HAS DIMENSION_ROLE <compDimRole >;

33 <sourceCube >."Cattle":"Animal";

34 "Animal" HAS LEVEL "Main Breed";

35 "Animal"."Main Breed":"Breed Name";

36

37 <sourceCube >.<compDimRole >:<compDim >;

38 <sourceCube >.<joinDimRole >:<joinDim >;

39 <cubeMeasure > RETURNS <cubeMeasureDom >;

40

41 <animalBreedSlice > IS_APPLICABLE_TO "Animal";

42 <baseCubeSlice > IS_APPLICABLE_TO <sourceCube >;

43 <iDimSlice > IS_APPLICABLE_TO <compDim >;

44 <cDimSlice > IS_APPLICABLE_TO <compDim >;

45 <groupCond > IS_APPLICABLE_TO <joinDim >;

46 <cubeMeasure > IS_APPLICABLE_TO <sourceCube >;

47 <compMeasure > IS_APPLICABLE_TO ("interestCube","comparisonCube");

48 END CONSTRAINTS;

49 END PATTERN;

50

51 CREATE PATTERN DESCRIPTION FOR "Happy Milk"/"Happy Milk

Catalog"/"Breed -Specific Subset -Subset Comparison" WITH

52 LANGUAGE = "English";

53 ALIAS = "Breed -Specific Comparison";

54 PROBLEM = "From the <sourceCube >, select the set of relevant facts using

the unary cube predicate <baseCubeSlice > and dimension predicate

<baseDimSlice >, which selects over the ""Main Breed"" level of a

dimension <baseDim > -- the result serves as the ""base cube"" for

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 206

further analysis. From that base cube , select ""interest cube"" and

""comparison cube"" using conditions over the dimension role

<compDimRole > according to the unary dimension predicates <iDimSlice >

and <cDimSlice >, respectively. Perform a roll -up for interest and

comparison cube according to the <groupCond > dimension grouping over

the <joinDim > dimension referenced by the dimension role

<joinDimRole > and compute a unary calculated measure <cubeMeasure >.

To obtain the query result cube , join the interest cube and

comparison cube over the <groupCond > dimension grouping and compute a

binary calculated comparative measure <compMeasure >.";

55 RELATED = "Breed -Specific Subset -Subset Side -By-Side Comparison";

56 EXAMPLE = "....";

57 END PATTERN DESCRIPTION;

58

59 CREATE PATTERN TEMPLATE FOR "Happy Milk"/"Happy Milk

Catalog"/"Breed -Specific Subset -Subset Comparison" WITH

60 LANGUAGE = "SQL" ;

61 DIALECT = "ORACLEv11" ;

62 EXPRESSION = "

63 *{ WITH baseCube AS (

64 SELECT *

65 FROM <sourceCube > sc JOIN

66 ""Animal"" a ON sc.""Cattle"" = a.}* $dimKey(""Animal"")*{

67 WHERE }* $expr(<baseCubeSlice >, sc) *{ AND }*

68 $expr(<animalBreedSlice >, a)*{),

69

70 interestCube AS (

71 SELECT }* $expr(<groupCond >, jd)*{,

72 }* $expr(<cubeMeasure >, bc)*{ AS <cubeMeasure >

73 FROM baseCube bc JOIN

74 <joinDim > jd ON bc.<joinDimRole >=jd.}* $dimKey(<joinDim >)*{ JOIN

75 <compDim > cd ON bc.<compDimRole >=cd.}* $dimKey(<compDim >)*{

76 WHERE }*$expr(<iDimSlice >, cd)*{

77 GROUP BY }*$expr(<groupCond >, jd)*{),

78

79 comparisonCube AS (

80 SELECT }*$expr(<groupCond >, jd)*{,

81 }*$expr(<cubeMeasure >, bc)*{ AS <cubeMeasure >

82 FROM baseCube bc JOIN

83 <joinDim > jd ON bc.<joinDimRole >=jd.}* $dimKey(<joinDim >)*{ JOIN

84 <compDim > cd ON bc.<compDimRole >=cd.}* $dimKey(<compDim >)*{

85 WHERE }*$expr(<cDimSlice >, cd)*{

86 GROUP BY }*$expr(<groupCond >, jd)*{)

87

88 SELECT }*$expr(<groupCond >, ic)*{,

89 ic.<cubeMeasure > AS ""Group of Interest"",

APPENDIX D. FULLY-WORKED ORGANIZATION-SPECIFIC RUNNING EXAMPLE OF
THE THESIS 207

90 cc.<cubeMeasure > AS ""Group of Comparison"",

91 }*$expr(<compMeasure >, ic, cc)*{ AS <compMeasure >

92 FROM interestCube ic JOIN

93 comparisonCube cc ON }*$expr(<groupCond >, ic)*{ = }*

$expr(<groupCond >, cc)";

94 END PATTERN TEMPLATE;

Appendix E
Curriculum Vitæ

208

Ilko Kovačić, MSc.
Curriculum Vitæ

Personal Information
Name Ilko Kovačić

Address Mariahilfer Straße 49/1/10, 1060 Wien
Phone +43 699 11013738
E-Mail ilko.kovacic@gmail.com

Birthday October 3, 1990

Work Experience
Co-Founder & Executive Director

since 02/2021 Finspacer GmbH
Sales and Product Development.

Lecturer for Bachelor Study Business Informatics
since 01/2021 Johannes Kepler University, Linz

Teaching class Data Modeling and Data & Knowledge Engineering.

Lecturer for Bachelor Study Information, Media and Commu-
nication

since 02/2020 Fachhochschule Burgenland, Pinkafeld
Teaching class Database Systems.

Lecturer for Master Study E-Commerce
since 09/2018 Fachhochschule Wiener Neustadt, Campus Wieselburg

Teaching class Databases & Information Management.

University Assistant
09/2015–12/2020 Johannes Kepler University, Linz - Data & Knowledge Engineering

University teaching, co-supervision of theses, and participation in research and
development projects.

Project Member
08/2015–09/2015 Johannes Kepler University, Linz - Data & Knowledge Engineering

Participation in the SemNOTAM project.

Tutor
03/2014–06/2015 Johannes Kepler University, Linz - Data & Knowledge Engineering

Grading excercises and supporting students in class Data & Knowledge Engi-
neering and Data Modeling.

Produkt- & Content-Manager
02/2012–12/2013 3p+ projekt produkt präsentation GmbH, Holzhausen

Management of data preparation, product development, and project execution
within the development of the 3p+ profiler.

Education
Doctoral Program in Social Sciences, Economics & Business

2015–2021 Johannes Kepler University, Linz
Specialization in Business Informatics

Master’s degree in Business Informatics (with distinction)
2013–2015 Johannes Kepler University, Linz

Specialization in Business Intelligence & Data Science

Bachelor’s degree in Business Informatics
2010–2013 Johannes Kepler University, Linz

Matura
2005–2010 Higher Technical College for Information Technology, Wels

Reseach & Development Projects
BEST - Achieving the Benefits of SWIM by making smart use
of Semantic Technologies

2016–2018 SESAR Joint Undertaking, under European Union’s Horizon 2020 Research and
Innovation programme by EU Horizon 2020 (Grant Agreement No. 699298)

AgriProKnow - Information Management in Precision Dairy
Farming

2015–2018 Austrian Research Promotion Agency (FFG - Production of the Future) (Grant
Agreement No. 848610)

SemNOTAM: Ontology-based representation and semantic
querying of Digital Notices to Airman

2014–2017 Austrian Research Promotion Agency (FFG - TAKE OFF) (Grant Agreement
No. 83990)

Theses
OLAP Patterns: A Pattern-Based Approach to Multidimen-
sional Data Analysis

Department Department for Business Informatics - Data & Knowledge Engineering
Supervisor o. Univ.-Prof. Dipl.-Ing. Dr. techn. Michael Schrefl

Implementation of an Extensible Mapper of Aeronautical In-
formation Exchange Model Data to ObjectLogic

Department Department for Business Informatics - Data & Knowledge Engineering
Supervisors o. Univ.-Prof. Dipl.-Ing. Dr. techn. Michael Schrefl

Entwicklung von Interaktionskonzepten für die gesten-
basierte und kollaborative Modellierung - Implementierung
des konzeptuellen Entwurfs anhand eines Prototyps

Department Department for Business Informatics - Communications Engineering
Supervisors o. Univ.-Prof. Dipl.-Ing. Dr. Christian Stary

Publications
2021 I. Kovacic, C. Schütz, B. Neumayr, M. Schrefl: OLAP Patterns: A Pattern-

Based Approach to Multidimensional Data Analysis. In: Data & Knowledge
Engineering Journal, peer reviewed, 2021. (accepted subject to minor revision)

2018 I. Kovacic, C. Schütz, S. Schausberger, R. Sumereder, M. Schrefl: Guided
Query Composition with Semantic OLAP Patterns. In: Proceedings of the 2nd
International Workshop on Data Analytics Solutions for Real-Life Applications
(DARLI-AP 2018), EDBT/ICDT 2018 Joint Conference, CEUR Workshop
Proceedings, 8 pages, 2018.

2017 C. Schütz, S. Schausberger, I. Kovacic, M. Schrefl: Semantic OLAP Patterns:
Elements of Reusable Business Analytics. In: Proceedings of the Confederated
International Conferences On-the-Move 2017 (OTM 2017), October 23-27,
2017, Rhodes, Greece, Springer International Publishing, Lecture Notes in
Computer Science (LNCS Vol. 10574), Print ISBN 978-3-319-69458-0, Online
ISBN 978-3-319-69459-7, peer reviewed, pp. 318-336, 2017.

2017 I. Kovacic, D. Steiner, C. Schütz, B. Neumayr, F. Burgstaller, M. Schrefl, S.
Wilson: Ontology-Based Data Description and Discovery in a SWIM Environ-
ment. In: Proceedings of the 2017 Integrated Communications, Navigation
and Surveillance Conference (ICNS 2017), April 18-20, 2017, Washington D.C.,
USA, IEEE Computer Society Press, 13 pages, peer reviewed, Best Paper in
Track 5 - Special Topics/Other, 2017.

2016 D. Steiner, F. Burgstaller, E. Gringinger, M. Schrefl, I. Kovacic: In-flight
Provisioning and Distribution of ATM Information. In: Proceedings of the
30th Congress of the International Council of the Aeronautical Sciences (ICAS
2016), September 25-30, 2016, Daejeon, Korea, 2016.

2016 D. Steiner, I. Kovacic, F. Burgstaller, M. Schrefl, T. Friesacher, E. Gringinger:
Semantic Enrichment of DNOTAMs to Reduce Information Overload in Pilot
Briefings. In: Proceedings of the Integrated Communications, Navigation and
Surveillance Conference (ICNS), April 19-21, 2016, Washington D.C., USA,
IEEE Publications, 2016.

Talks
06/2021 Austrian Computer Science Day 2021 in Klagenfurt, Austria, Nominated as

Young Expert

10/2018 2nd International Workshop on Data Analytics Solutions for Real-Life Ap-
plications (DARLI-AP 2018) in Vienna, Austria, workshop participation and
presentation of the paper Guided Query Composition with Semantic OLAP
Patterns

10/2017 Confederated International Conferences On-the-Move 2017 (OTM 2017) in
Rhodes, Greece, conference participation and presentation of the paper Semantic
OLAP Patterns: Elements of Reusable Business Analytics

04/2017 Integrated Communication, Navigation, and Surveillance Conference (ICNS) in
Washington D.C., USA, conference participation and presentation of the paper
Ontology-Based Data Description and Discovery in a SWIM Environment

04/2016 Integrated Communication, Navigation, and Surveillance Conference (ICNS) in
Washington D.C., USA, conference participation and presentation of the paper
Semantic Enrichment of DNOTAMs to Reduce Information Overload in Pilot
Briefings

Languages
German Native

Serbo-Croatian Native
English C1

IT-Skills
Programming Java, C, Python

Semantic
technologies

OWL, RDFs, SPARQL, ObjectLogic, datalog, F-Logic

Web Development HTML, CSS, JavaScript, PHP, jQuery, AJAX
Databases SQL (Oracle), PL/SQL, XQuery, XPath

Text processing OpenOffice, LATEX, Microsoft Office
Imaging Adobe Photoshop, GIMP

Administration Knowledge in handling Linux and Windows systems
Knowledge of network administration

Awards & Certificates
12/2015 Merit scholarship for the master’s program
02/2015 ERP4 Students, Integrated Business Processes with SAP ERP (TERP10)
01/2015 Uni Management Club Linz, Management Acadmia
03/2014 IBM DB2 Academic Associate, DB2 Database and Application Fundamentals
06/2009 Cambridge ESOL Level 1 Certificate in ESOL International

	Introduction
	Motivation
	Approach
	Contributions
	Outline

	The Pattern-Based Approach in a Nutshell
	Pattern Definition and Usage
	Running Example

	Related Work
	Patterns in General
	Data Modeling Patterns
	Data Analysis Patterns
	Visual Analytics and Model-Driven Analytics

	Enriched Multidimensional Models
	Enriching Multidimensional Models with Business Terms
	Usage of Business Terms
	Enriched Multidimensional Model Notation

	Pattern Definition
	Formal Pattern Foundations
	Graphical Pattern Notation

	Pattern Usage
	Pattern Instantiation and Grounding
	Pattern Execution

	Pattern Organization
	Levels of Abstraction
	Domain-Independent Patterns
	Domain-Specific Patterns
	Organization-Specific Patterns
	Pattern Catalogs

	Proof-of-Concept Prototype
	Architecture
	Functionality
	Components
	Usage Scenario

	Evaluation
	Relevance and Expressiveness
	Quality Assessment as a Domain-Specific Language

	Extensions
	Composite Types
	Optional Variables
	Generic Business Terms
	Description of Value Sets

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	ANTLR4 Grammar Definitions
	Domain-Independent Pattern Catalog
	Non-Comparative Pattern
	Homogeneous Subset-Baseset Comparison
	Homogeneous Subset-Complement Comparison
	Homogeneous Subset-Subset Comparison
	Heterogeneous Subset-Subset Comparison

	Domain-Specific Sample Pattern From the AgriProKnow Use Case
	Fully-Worked Organization-Specific Running Example of the Thesis
	Curriculum Vitæ

