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Kurzfassung

Wissensgraphen (engl. Knowledge Graphs, KGs) stellen reale Objekte und deren Be-
ziehungen zueinander dar. KGs sind oft an bestimmte Kontexte gebunden. Dies ist im
Flugverkehrsmanagement (engl. Air Traffic Management, ATM) der Fall, wo Wissen
von Natur aus an einen Kontext gekoppelt ist, der aus Dimensionen wie Ort, Zeit oder
Thema besteht. Diese Tatsache führte zur Entwicklung einer allgemein anwendbaren
Technik namens KG-OLAP (Online Analytical Processing). KG-OLAP bietet eine mehr-
dimensionale Sicht auf kontextualisierte Wissensgraphen und ermöglicht kontextuelle
und graphische Operationen auf dem resultierenden KG-OLAP-Würfel. Der auf GitHub
veröffentlichte Proof-of-Concept-Prototyp mit GraphDB demonstriert die Funktionalität
von KG-OLAP. Der Prototyp ist jedoch nicht für Big Data geeignet weshalb er nicht für
datenintensive Anwendungen geeignet ist. Zum Beispiel werden alleine in Europa über
zehn Milliarden RDF-Triples an ATM-Wissen jährlich generiert. Dabei ist nicht nur das
Volumen ein Problem, sondern auch die Geschwindigkeit der Datengenerierung sowie
die semi- und unstrukturierte Natur der ATM-Datentypen. Das Ziel dieser Arbeit ist
es, eine generische Architektur vorzuschlagen und zu implementieren, die sowohl die
Anforderungen von KG-OLAP als auch von Big Data erfüllt. Der erste Beitrag dieser
Arbeit ist die Big KG-OLAP-Referenzarchitektur mit Prozessdefinitionen für die folgen-
den Hauptfunktionen: Datenaufnahme und kontextbezogene Operationen Slice’n’Dice
und Merge. Der zweite Beitrag ist eine prototypische Cloud-Native-Implementierung der
vorgeschlagenen Architektur, die auf Amazon Web Services bereitgestellt und anhand
eines ATM Anwendungsfall demonstriert wird. Der dritte und letzte Beitrag ist eine Per-
formanceevaluierung der Hauptfunktionen der Implementierung, um die Skalierbarkeit
zu testen.
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Abstract

Knowledge graphs (KGs) represent real objects and the relationships to each other. KGs
are often bound to specific contexts. This is the case in air traffic management (ATM) where
knowledge is inherently coupled to a context consisting of dimensions such as a location,
time or topic. This fact led to the development of a generally applicable technique called
KG-OLAP (online analytical processing). KG-OLAP provides a multidimensional view on
contextualized knowledge graphs and enables contextual and graph operations on the
resulting KG-OLAP cube. The proof-of-concept prototype with GraphDB published on
GitHub demonstrates the functionality of KG-OLAP. However, the prototype is not feasible
for big data which makes is unsuitable for data-intensive applications. For example, in
Europe alone, over ten billion RDF triples of ATM knowledge are generated annually. With
that not only the volume is a problem but also the speed of data generation as well as the
semi- and unstructured nature of ATM data types. The goal of this thesis is to propose and
implement a generic architecture that meets both KG-OLAP and big data requirements.
The first contribution of this thesis is the Big KG-OLAP reference architecture including
process definitions for the following main functionalities: data ingestion and contextual
operations Slice’n’Dice and Merge. A prototypical cloud-native implementation of the
proposed architecture deployed on Amazon Web Services and demonstrated using an
ATM use case. The third and last contribution is a performance evaluation of the main
functionalities testing their scalability.
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1. Introduction

This thesis investigates the scalability of Knowledge Graph OLAP (KG-OLAP) - a con-
ceptual framework for working with contextualized knowledge graphs - by proposing
and implementing a cloud-native architecture. The contributed artifacts, the proposed
reference architecture and the prototype implementation, lay the foundation for the appli-
cability of KG-OLAP on big data sets. This section explains the motivation, contribution
and the structure of the thesis.

1.1. Motivation

Knowledge graphs are gaining more and more popularity since Google published their
search-engine enhancing knowledge graph (KG) back in 2012 [1]. KGs represent real ob-
jects and the relationships to each other. According to Serafini and Homola [2], knowledge
is more and more inherently bound to specific contexts, such as to locations, times or
topics. Taking search engines as an example, the current location and local time of the
person who submits the search query define the results when querying for the search
term Restaurants. Showing all results for Restaurants in the world without considering
the context would inevitably lead to tremendous information overload and unusable
results.

Context is also important in the aeronautics domain where pilots are being briefed with a
flood of information without taking the flight context into account [3]. The same authors
propose a technique to enrich data in air traffic management (ATM) with certain contexts
to enable pilot briefings with information filtering. Based on this project, researches found
out that different data in ATM is inherently context-dependent and that there is a need to
better handle various data formats beyond notices to airmen (NOTAMs) [4].
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1. Introduction

Schuetz et al. developed a general applicable concept called KG-OLAP (Online Analyti-
cal Processing) which provides a multidimensional view on contextualized knowledge
graphs [5]. KG-OLAP is similar to traditional OLAP but instead of numbers, the cells
(=contexts) of a KG-OLAP cube contain knowledge in the form of RDF triples (Resource
Description Framework). The proposed contextual operations (Slice’n’Dice, Merge) and
graph operations (Abstraction, Pivoting, Reification) on the KG-OLAP cube enable a large
range of different use cases. One use case are pilot briefings in ATM where the goal is to
extract certain knowledge based on the context from the cube and manipulate it to provide
pilots the least amount of information possible while of course not missing relevant pieces.
The authors describe an implementation using a graph database (GraphDB1) and show its
applicability for pilot briefings on small data sets. While the performance is good for small
KG-OLAP cubes, the implementation is not feasible anymore once the data model exceeds
about 5 000 contexts or 70 million RDF triples. The prototype is available online2.

With the current implementation of KG-OLAP [5] it is not possible to support data in-
tensive applications. First, data ingestion times are increasing non-linearly until a point
is reached where the system can not handle new data anymore in a reasonable amount
of time. As mentioned before, the maximum capabilities are less than 5 000 contexts or
about 70 million RDF triples. Taking ATM as a use case scenario again, a goal might be
to maintain the entire ATM knowledge of Europe in a single system. NASA researchers
processed data for 1342 flights in a previous project which resulted in about 2.4 million
RDF triples [6]. With over 30 000 flights per day on average handled by Eurocontrol [7], the
current system would reach its limits within hours, if many new contexts are generated,
or days at latest. Considering those numbers, the potential amount of ATM knowledge
in Europe generated within a year is above 12 billion triples. Secondly, data is generated
at a high speed with varying demand. In ATM for instance, more data is generated
during holiday season and on the contrary there is less traffic during nights. Hence, a
KG-OLAP system must provide constant insertion times regardless of the current load.
Third, different data formats exist in the ATM domain, such as IWXXM [8] for weather
data, FIXM for flight and flow information [9] or AIXM for aeronautical information
services (e.g., NOTAMs) [10]. To enable a broad range application fields, it is essential
that the KG-OLAP system is open for any data format. Only within ATM for instance,
pilots are briefed with flight traffic, airport and weather information prior to the takeoff.

1https://graphdb.ontotext.com/
2http://kg-olap.dke.uni-linz.ac.at
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1. Introduction

The current implementation only accepts RDF format which requires other applications to
transform data prior to ingestion.

To support the amount and complexity of current and future data sets, a KG-OLAP system
must cope with big data. Big data is defined by three main components: Volume, Velocity
and Variety [11]. Volume describes the previously unseen huge amount of data that is
created in the big data era. The data is generated and ingested at high speed with spikes
in both directions, hence systems need to be elastic to cope with increased Velocity. Finally,
multiple analysts estimate that 80% to 90% percent of the data worldwide is unstruc-
tured [12]. This includes emails, presentations, videos, audio, pictures, text and more.
The remaining percentage of the world’s data is (semi-)structured. Self describing XML
files are semi-structured while rows stored in RDMS (Relational Database Management
Systems) count as structured data. Systems can not rely on structured data exclusively
anymore, especially because the majority is not structured. The Variety component refers to
this phenomenon and adds the third V to big data together with Volume and Velocity. The
previously mentioned requirements for KG-OLAP combined with big data requirements
led to the idea of Big KG-OLAP.

1.2. Contributions

The goal of this master thesis is to lay the foundation of Big KG-OLAP and continue
from a theoretical concept proposal [13]. The authors shed light on the concept of dis-
tributed KG-OLAP cubes and updated operations from KG-OLAP that do not work for a
distributed solution. The paper contains an approach for contextual operations (Slice’n’Dice
and Merge) on distributed KG-OLAP cubes. Graph operations (Abstraction, Pivoting, Reifi-
cation) manipulate the graph within single cells, hence the authors state KG-OLAP cube
distribution do not affect the original concepts of those. Starting from these concepts and
mentioned problems regarding the 3 Vs of big data, the focus of this thesis is to propose
an architecture and implement a system that provides constant insertion times for big
data while keeping reasonable response times for contextual operations. More precisely,
the target is to store and maintain a large amount of basis data from which relatively
small KG-OLAP cubes of interest can be queried. Those returned KG-OLAP cubes could
be small enough to be processed efficiently by the current GraphDB implementation.
Graph operations are not covered in this thesis as they are no subject to KG-OLAP cube

3



1. Introduction

distribution hence do not affect the resulting architecture. Scaling those is part of future
research.

The current GraphDB implementation is not feasible for Big KG-OLAP. A different ap-
proach is necessary. A modern architecture to cope with big data workloads are data
lakes [14]. In contrast to data warehouses, data lakes have no defined ETL-preprocesses,
are cost-efficient for large amounts of data and store data in raw rather than in prepro-
cessed format. Most of these characteristics fit well for Big KG-OLAP. However, contextual
operations in KG-OLAP would not scale with raw data only as query complexity increases
with every added data point. To support those, the system needs some preprocessing to
find stored data points in the multidimensional model fast and return a result in RDF
format. A hybrid solution for this use case is called data lakehouse, which combines
advantages of data warehouses and lakes [15]. It adds an indexing, metadata and caching
layer on top of a data lake, hence enables transaction management and fast, SQL-like
queries. A data lakehouse approach was chosen as basis Big KG-OLAP architecture to
ingest and store high loads of different data types while keeping a multidimensional
OLAP model and caching on top.

The proposed data lakehouse architecture and implementation in this thesis follows cloud-
native principles. The term cloud-native was first mentioned in literature in 2013 [16]
and describes applications inherently designed for the cloud. According to a literature
review study, a cloud-native application (CNA) is, among best-practices for application
development such as version control and logging, characterized by its distribution, inde-
pendent (micro-)services, horizontal scalability, operation on an elastic platform and a
limited number of stateful services [17]. The goal of these architectural characteristics of
CNAs is to build modern cloud applications that are easy to install, maintain, port, modify
and scale while ensuring availability and fault-tolerance. Providing a modern application
as foundation for Big KG-OLAP is important for future research efforts and the real-world
applications.

1.3. Structure

This thesis is structured as follows. Section 2 covers the state of the art of applied concepts
and technologies as well as related work. Afterwards, KG-OLAP is described in detail in

4



1. Introduction

Section 3. Section 4 analyzes the requirements for Big KG-OLAP and identifies approaches
to solve the discovered challenges. The next section explains and discusses the general ref-
erence architecture followed by the implemented prototype. Subsequently, a performance
evaluation is conducted and the conclusion provides a summarized view on the work.

Section 2 covers all concepts and technologies that are important to understand this
thesis. Knowledge graphs and data warehouses are explained to understand the KG-
OLAP concept. Also, existing ideas that shape the design of the reference architecture are
covered as well as cloud technologies that are used for prototype development. Moreover,
the thesis is set into context of current knowledge by comparing it to related existing
literature.

In Section 3, the KG-OLAP concept on which this thesis builds on is explained. It includes
the multidimensional model of contextualized knowledge graphs, functional requirements
and operations. The contextual operations are well described while an overview of the graph
operations is given. Also, the limitations of the current implementation are part of this
section.

A requirements analysis for a Big KG-OLAP system based on an air traffic management
use case is done in Section 4. Furthermore, system design approaches are discussed to
meet challenges especially to fulfill the 3 Vs of big data and functional requirements of
KG-OLAP.

One contribution of this thesis, the reference architecture, is covered in Section 5. A
detailed explanation of each system component and its interactions is given. Additionally,
it describes the workflow of the two main functionalities, data ingestion and contextual
operations.

Section 6 contains the architecture of the prototype and its implementation. The focus of
this section is to explain which technologies or services, especially Amazon Web Services
(AWS), are used and how they are integrated in the overall system. Moreover, a code-level
overview of data ingestion and contextual operation is included.

The performance evaluation of the prototype implementation deployed on AWS is done
in Section 7. It is structured in two subsections, one evaluating the data ingestion and the
second one tests the contextual operations.

5



1. Introduction

Finally, the conclusion in Section 8 summarizes the thesis and provides an outlook on
further research directions.
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2. Background

This section explains concepts and technologies used throughout the thesis. This state of
the art review provides the reader a foundation to comprehend the following sections.
Additionally, existing projects in the literature solving similar problems are reviewed.

2.1. Knowledge graphs and Resource Description Framework

Knowledge graphs (KGs) represent real world entities and their relationships. The term
originated from the Semantic Web initiative and got popular since the last decade [18].
Semantic Web tries to bring structure to the internet, for example by applying schema.org1.
KGs contain facts or assertional knowledge (ABox) and also terminological knowledge
(TBox) [19]. For instance, the knowledge that Runway 1 is closed is ABox while Runway XY
has type Runway is classified as TBox. The later ones are used to employ reasoning on the
knowledge graph and derive new implicit knowledge. A knowledge graph example is
illustrated in Figure 2.1.

RDF. In the Semantic Web community, the common standard to represent KGs is RDF
(Resource Description Framework) [16]. The RDF model is a standard to exchange data
on the web [18]. It is a semi-structured model that allows schema evolution under the
open-world assumption. Entities and relationships are logically in the form of two nodes
with a link while using the URI structure for naming. The format to represent knowledge is
called triple. A triple consists of a subject, a predicate and an object and is read from left to
right or from subject to object. Triples can be extended with a graph identifier resulting in
a quad. Quads are the basis for contextualized knowledge graphs and KG-OLAP. Different
RDF formats exists and are suitable for different use cases. In this thesis, the N-Quads
format is used. This format is line based and best used for streaming, since the line order

1https://www.schema.org/
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2. Background

Figure 2.1.: Knowledge graph

is not important and data can be compressed [19]. The following two statements illustrate
RDF and the N-Quads format in general form "<subject> <predicate> <object> <graph> ."
and an example "<Runway 1> <has status> <closed> <vienna-2022-07-graph> .".

2.2. Data exchange in Air Traffic Management

AIXM [10] is the abbreviation for aeronautical information exchange model and is the
standard format used in aeronautical information services such as for airports or routes.
There is a UML (Unified Modeling Language) model available as well as a XSD (XML
schema definition) schema with the current version 5.1.1. Its main application are digital
notices to airmen (Digital NOTAMs). Previously, NOTAMs were released in plain text that
were hard to read for humans and also difficult to parse automatically. With the growing
amount of NOTAMs worldwide (1 million a year), it got hard to extract information
relevant for certain situations. Digital NOTAMs try to solve this issue. DNOTAMs are in
XML (extensible markup language) format and use the AIXM XSD schema definition. The

8



2. Background

format is based on GML (Geography Markup Language) hence fits naturally with RDF [20].
Besides the fact that message of digital NOTAMs can be processed and transformed into
RDF knowledge, it is also possible to extract the context of it. This enabled initiatives such
as KG-OLAP. Listing 2.1 shows a digital NOTAM. Some elements and attributes were
removed to increase the readability. The DNOTAM basically states that the airport EDDF
is closed on Feb 1, 2018 from 00:00:00 until 23:59:59. The AIXMBasicMessage contains
two members, the GML event and the notification content according to the AIXM 5.1.1
specification. It is important to mention that the structure of the DNOTAM works as
follows. An element representing an Entity (upper case) is always followed by an element
representing a Predicate (lower case) and vice versa. Moreover, each Entity has a unique
GML identifier. For instance, the AIXMBasicMessage with the ID 9b118672 has a member
from type Airport Heliport with the ID 30fdd110. Because of that it is a natural fit to
transform a DNOTAM into RDF. Transformed into an RDF triple in N-Triple format,
the given example would turn into: "<AIXMBasicMessage 9b118672> <hasMember>
<AirportHeliport 30fdd110> .".

Listing 2.1: NOTAM example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <message:AIXMBasicMessage xmlns:aixm="http://www.aixm.aero/schema/5.1.1"

gml:id="9b118672">

3 <message:hasMember>

4 <event:Event gml:id="4e4d14a2">

5 <event:timeSlice>

6 <event:EventTimeSlice gml:id="db939cfa">

7 <gml:TimePeriod gml:id="84906336">

8 <gml:beginPosition>2018-02-01T00:00:00Z</gml:

beginPosition>

9 <gml:endPosition>2018-02-01T23:59:59Z</gml:

endPosition>

10 </gml:TimePeriod>

11 <event:textNOTAM>

12 <event:NOTAM gml:id="f571ed3b">

13 <event:affectedFIR>EDGG</event:affectedFIR>

14 <event:location>EDDF</event:location>

15 <event:text>Airport is closed</event:text>

9



2. Background

16 </event:NOTAM>

17 </event:textNOTAM>

18 </event:EventTimeSlice>

19 </event:timeSlice>

20 </event:Event>

21 </message:hasMember>

22 <message:hasMember>

23 <aixm:AirportHeliport gml:id="30fdd110">

24 <aixm:timeSlice>

25 <aixm:AirportHeliportTimeSlice gml:id="63775a40">

26 <gml:TimePeriod gml:id="22fb4faa">

27 <gml:beginPosition>2018-02-01T00:00:00Z</gml:

beginPosition>

28 <gml:endPosition>2018-02-01T23:59:59Z</gml:

endPosition>

29 </gml:TimePeriod>

30 <aixm:availability gml:id="dc535683">

31 <aixm:ServiceOperationalStatus gml:id="df270f0c">

32 <aixm:operationalStatus>CLOSED</aixm:

operationalStatus>

33 </aixm:ServiceOperationalStatus>

34 </aixm:availability>

35 </aixm:AirportHeliportTimeSlice>

36 </aixm:timeSlice>

37 </aixm:AirportHeliport>

38 </message:hasMember>

39 </message:AIXMBasicMessage>

Besides AIXM, there exist different data exchange models in air traffic management such
as IWXXM for weather data or FIXM for flight and flow data. Those models are not
discussed further as the prototype in this thesis is shown and tested with digital NOTAMs
in AIXM format.
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2.3. OLAP, Data Warehouses, Data Lakes and Data Lakehouses

Data warehouses and Online Analytical Processing (OLAP) are essential for data driven
decisions for over 20 years [21]. Data warehouses are central databases that extract, trans-
form and load (ETL) data from various sources and different structures. The central
database is then optimized for analytical queries (OLAP) rather than for fast (Online)
transaction processing (OLTP). On top of the architecture there are data mining, reporting
and analysis tools which use the data warehouse as source. One major difference between
operational database and data warehouses is the multidimensional view on the data.
Figure 2.2 shows an OLAP cube for sales including cells that are separated along three
dimensions: products, time and geography. Analytical queries are able to Slice’n’Dice
the cube e.g. to select the number of grocery sales in Austria in Q1. Additional OLAP
operations are Roll-Up for less detailed queries or Drill-Down to increase the granular-
ity. Selecting the total number of TV sales regardless of the region or time is a Roll-Up
example.

Figure 2.2.: OLAP cube

Important terms in OLAP besides Dimension are Level, Member and Hierarchy. A level
specifies a granularity in a dimension. Day, Month, Quarter and Year are four levels of
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the Time dimensions while Q1 is an exact member. A hierarchy is a complete chain of
members, one for each level Feb 1, 2022 → Feb 2022 → Q1 → 2022 is a valid hierarchy.

These multidimensional models are usually logically implemented in traditional RDMS
databases and mapped into relations. The star schema is an example for a logical data
warehouse design, where one fact table includes the numbers as well as a reference to
each dimension table. An alternative is the snowflake schema with the difference that
there is not a single table per dimension but multiple ones for each level. SQL (Structured
Query Language) is used for ROLAP (relational OLAP) queries and also supports concepts
such as Roll-Up. An alternative approach are MOLAP (Multidimensional OLAP) query
languages.

In KG-OLAP [5], the case is similar but instead of numbers, the cells contain knowledge in
the form of RDF triples. Also, OLAP is rather used to describe the multidimensional view
on the contextualized knowledge graph than on the analytical focus as the concept also
aims to support operational use cases. KG-OLAP supports Slice’n’Dice and Roll-Up (or
Merge) while Drill-Down is the not explicitly mentioned as it is the default format. Queries
that do not explicitly use Roll-Up return the result on the most specific granularity hence
correspond to a Drill-Down operation. The system implemented within this thesis contains
a domain specific language (DSL) called KGOQL (KG-OLAP Query Language) which is
leaned on SQL but simplified and tailored for the contextual operations Slice’n’Dice and
Merge. As mentioned before, the query output is a contextualized graph in RDF N-Quads
format.

Data lakes were born back in 2010 [22] with the idea to store data in a single source
called "lake" in its original format. The goal is to keep maintenance costs low and data
openness high. To avoid data swamps there should be a set of functions, transformation
engines and cleaners around the lake to ensure a minimal data quality standard and data
interoperability. Data lakes try to tear down data silos and tackle big data challenges such
as Volume, Velocity and Variety [14]. However, there are open challenges that still prevent
data lakes from becoming the universal solution. Analysis performance uncertainty,
quality, security and reanalyzation are some of those. For KG-OLAP, a data lake is not
practicable due to the lack of the multidimensional model. Without this preprocessed
structure, the context of each data file has to be analyzed during every OLAP operation.
This would result in a query complexity 0(n) hence not suitable for large amounts of
files.
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Data lakehouses. The combination of a data warehouse and a data lake is called data
lakehouse [15]. The authors define it as "a new generation of open platforms that unify
data warehousing and advanced analytics". It combines the cost efficiency and data open-
ness of data lakes as well as OLAP features such as ACID transactions, data versioning,
indexing, caching and query optimization. The data is not completely ETL’d on inser-
tion, but rather lazily transformed on querying. Figure 2.3 shows the proposed general
architecture. Its basis is a data lake where any kind of data is stored in an open format
(e.g. Parquet). On top of the data lake, there is a layer that extracts metadata, indexes
the data and performs caching. This layer requires ETL processes that also ensure data
quality simultaneously. Application fields such as business intelligence, reports, data
science and machine learning communicate with this layer usually rather than querying
files directly from the data lake (unless it is required). The authors especially emphasize
the optimization for data science and machine learning and also propose special APIs
on top of the Delta Lake implementation. While details of the proposed data lakehouse
architecture in the referenced paper are not relevant, the basic idea to store data as it is
with a data warehousing layer on top is a good fit for Big KG-OLAP.

Figure 2.3.: Data Lakehouse (Source: Own drawing based on existing figure [15])
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2.4. Cloud technologies

REST or REpresentational State Transfer is a web architecture for distributed systems [23].
REST is used for stateless client-server communication over the network. Each request is
an independent entity which enhances scalability and reliability as no state has to be stored
between requests. The main advancement of REST over other network communication
architectures is its uniform interface to represent resources. Instead of methods, the main
element of REST is the resource. Endpoints are built based on resource names and identi-
fiers (Uniform Resource Locators or URLs) and every endpoint follows a similar pattern. In
addition, the HTTP method describes the operation on the resource. For instance, a HTTP
GET request on a specific resource with a given identifier always returns the same resource
and will never modify it. REST allows transparent and standardized communication in
the internet era and is a widely accepted architecture for cloud applications.

gRPC stands for gRPC Remote Procedure Calls is a framework for high performance
network communication [24]. It is a novel alternate technology for REST to connect
services in their environments. Instead of striving to standardize resource access and
modification, gRPC relies on a shared protocol buffer message and service definitions.
The protocol buffer format provides binary serialization for arbitrary data packages that
do not exceed a few megabytes [25]. Creating and parsing protocol buffer messages is
more efficient than transmitting human-readable formats such as JSON. Protocol buffer
definitions need to be complied for each technology separately. Currently, there are 11
different languages supported. gRPC is based on HTTP/2 which allows multiplexing
and connection reusage. Together with an efficient binary packaging, gRPC is faster than
REST [26].

Container and Docker. The goal of a standardized container is to put a software com-
ponent, including all its dependencies, into a self-explanatory and portable format. A
container can be executed, regardless of its content, by any container runtime environment
without additional dependencies and without knowledge of the underlying infrastruc-
ture [27]. Containers leverage basic modern Linux kernel features such as control groups
(cgroups) and namespaces to isolate functionality and resources, similar to virtual ma-
chines. However, a container has less overhead than a virtual machine and is easier to
port [28]. Containers play a big role in cloud-native development as they enable a self-
contained and independent deployment of services [17]. A concrete container technology
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is Docker [29]. Docker is widely used and provides a set of tools to create container
images, distribute and manage containers. Its container runtime is also supported by
Kubernetes.

Kubernetes is an open source container orchestration software maintained by the Cloud
Native Computing Foundation (CNCF) [30]. It is the industry standard to develop reliable,
scalable distributed cloud-native systems. Apart from automated scaling mechanism
for deployments it provides failover capabilities in case of system errors. Many cloud
providers including AWS provide managed Kubernetes services such as Amazon EKS
which is used in this thesis to run the Big KG-OLAP lakehouse. Along with the operational
benefits of Kubernetes it enables abstracting the underlying infrastructure. There exist
many concepts in Kubernetes for different kind of abstractions [31]. The declarative
Deployment concept defines the configuration of Pods and ReplicaSets. A key concept in
Kubernetes is a Pod, which consists of one or more (Docker) containers and represents
the smallest logical unit in the ecosystem. A ReplicaSet on top ensures that the desired
numbers of Pods are actually running. Apart from concepts for workload resources there
are others, such as Service and Ingress for Pod network access and load balancing. The
declaration of the concepts used for the deployment of the Big KG-OLAP lakehouse is
added in appendix A.2.

Service mesh and Linkerd. A service mesh [32] sits right between services and manages
and observes the traffic between them. The main purpose of using service meshes is relia-
bility, observability and security. Most service meshes (including Linkerd) operate on ISO
OSI layer 7 where its main focus is on HTTP including HTTP/2. Service meshes can retry
failed idempotent HTTP requests, block unauthorized ones and collect communication
metrics such as success rates. Linkerd is an open source service mesh for Kubernetes [25].
It is a lightweight proxy that runs as a sidecar container in every "meshed" Pod in the
Kubernetes cluster. Because it is able to manage HTTP/2 traffic and therefore gRPC calls,
it is used in the Big KG-OLAP deployment to enable load balancing for multiplexed and
reused gRPC connections between the Surface and Bed services in Kubernetes.

NoSQL databases are an emerging trend that emerged due to scalability issues with
traditional relational databases [33]. NoSQL or "Not Only SQL" refers to distributed
databases of different subtypes that prefer availability over consistency according to the
CAP theorem [34]. These subtypes include document databases, key-value caches, key-
value stores, column stores or graph databases. Each type tries to solve a different issue
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while the common goal is to provide schema flexibility and big data support. NoSQL
databases are not designed to meet the strict ACID properties of traditional databases
but are rather optimized for availability, scalability and performance. On read, NoSQL
databases guarantee that a non-error response is returned but not that it contains the latest
update. This might not be suited for crucial applications that rely on strict transactions
but is suited well for large distributed systems.

Message queues enable asynchronous communication in distributed systems [35]. A
queue is a stateful message store that keeps a message until it is processed and deleted.
This architectural pattern allows decoupling into small stateless services that require
reliable asynchronous communication. Different forms of message queues such as point-
to-point messaging or publish/subscribe exist and are suitable for various use cases [36].
In point-to-point, the queue is populated by a producer, a consumer periodically checks
for new messages and one message is eventually processed by exactly one consumer. In
contrast to that the latter one relies on the consumer to subscribe on topics of interest
without the producer actively sending messages anywhere upfront.

Object stores store objects instead of files or blocks [37]. Objects can be any size or type,
including files, database tables or multimedia. They combine the advantages of both files
and blocks. Similar to blocks, objects can be directly accessed via an identifier without a
storage device in front (e.g. a server) while providing a convenient file-like access interface.
Additional metadata natively attached to the object enables features such as different
per-object access policies [38]. Object storages work well for unstructured append-only
data where in fact it provides infinite scale hence it is a good fit for long-term storage in
data lakehouses [39]. They do not support essential file update mechanisms locking or
sharing hence object storages should not be used for transactional data.

2.5. Related work

This section covers existing projects in the literature that are related to this work. Besides
a short overview of every selected research it discusses overlaps and differences to the
architecture and implementation presented in this thesis. Also, similar papers are grouped
for better comprehension of this section aiming to place this work into the context of
existing knowledge.
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Data lakehouses. The term data lakehouse was introduced in 2021 [15]. The authors
present the concept behind it, its motivations and requirements. They also compare this
concept with the data lake and data warehouse and that a data lakehouse combines
the advantages of both of them. In addition to the general architecture, the authors
present an implementation based on the data lakehouse framework Delta Lake. The
proposed implementation is based on Amazon S3 storage in Apache Parquet format
with the transactional processing engine Delta Lake on top and with metadata, caching
and indexing in between. SQL APIs and declarative DataFrame APIs enable OLAP
queries and machine learning applications on the data lakehouse. The system is flexible
and configurable. It can be explored as a potential data lakehouse for a Big KG-OLAP
implementation in a future research. However, there are open questions including RDF
mapping, real time querying and knowledge propagation which were the main reasons
that an own data lakehouse prototype was built instead.

Similar to this thesis the authors of a prototypical research study also built a cloud-
native data lakehouse based on open source tools such as Apache Spark or PostgreSQL
for network telemetry and analytics [40]. The authors also chose to build on cloud-
native principles to enable operation on modern private, public and hybrid clouds. The
architecture is designed to work with (relatively small) row-based data that is temporarily
stored in a relational PostgreSQL database which can be analyzed using SQL later. Hence,
the current system would not work for large unstructured data objects, real time queries,
or RDF based output.

Another study proposed a data lakehouse architecture for health data analysis which
focuses especially on fine granular access control and permission management due to
the sensitive nature of the data [41]. The system accepts structured, semi-structured and
unstructured data. It does pre-processing, intensive processing and ongoing re-processing
to keep data quality high and ready for analysis. These preparation steps are called
pre-processing, data cataloging and data placement. In contrast to this work and the other
lakehouse architectures, the authors do not consider those steps as part of the lakehouse.
They see the lakehouse as a storage engine consisting of a metadata management layer, a
data management layer and three storage levels namely caching layer, high performance
storage layer and long term storage. The stored file format is Parquet and the tests show
that they could reduce the query times as well as the used storage significantly. The
authors do not state which technologies they used to implement the preparation steps
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or the lakehouse itself, hence it is hard to argue its applicability for Big KG-OLAP. From
a high-level view it is a similar architecture without on-demand (pre-)processing and
without the possibility to output RDF data.

OLAP over big data. An essential part of this thesis is the scalable index store which
implemented the data warehouse star schema. Instead of a traditional relational database,
the NoSQL technology Apache Cassandra is employed which is distributed per design
hence horizontally scalable. Instead of facts, the "fact table" contains file locations refer-
encing data in the Big KG-OLAP lakehouse. An existing paper follows a similar idea as
the authors implemented a NoSQL based OLAP cube system with Apache HBase and
Hadoop [42]. Its central contribution is the MC-CUBE (MapReduce Columnar CUBE)
operator which is able to perform OLAP operations on non-relational and distributed data
warehouses. This research shows that NoSQL database can lead to increased performance
in (big) data warehousing.

Chen et al. [43] describe a distributed data warehouse applicable for large data sets. Its four
conceptual modules - data acquisition, data storage, OLAP analysis and data visualization
- are entirely based on Apache open source software projects such as Fluma, Kylin and
Kafka except one tool called Saiku, which is used for visualization. The scalable system
supports relational data sources as well as streaming data and includes two OLAP engines
for different query requirements. Especially for MOLAP (multidimensional OLAP) which
is performed by the Kylin engine, the system tests show very low operation times. The data
warehouse is tailored to support traditional numbers-based-OLAP hence can not fulfill
special KG-OLAP requirements such as schema variability or knowledge propagation.

Big data in ATM. A recent advance in ATM is the system-wide information management
(SWIM) and with it the ATM community recognized the need to work with big data [44].
The goal of SWIM is to integrate and standardize various sources and data formats (e.g.
AIXM or FIXM) in the ATM domain hence it is similar to the scope of the Big KG-OLAP
lakehouse trying to merge different sources into a single virtual knowledge graph. The
referenced paper extends the current SWIM architecture with frameworks that enable big
data processing including data acquisition, data filtering and data lifecycle management.
The proposed solution for that is a data lake extension based on big data technologies such
as Hadoop or Apache Storm. In addition, a machine learning and analytics layer should
create the possibility to gain deep insights in the data. For that, the authors propose the
use of Apache Spark for machine learning, which is a widely used framework for big data
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processing. The SWIM initiative with big data support tries to solve a similar issue as Big
KG-OLAP does for the ATM domain, providing a system for ATM big data. However, KG-
OLAP is a generic approach for multidimensional operations on contextualized knowledge
graphs while SWIM targets specific requirements in ATM.

Another approach to handle big data in ATM is described by [45]. It contains a complete
architecture for handling large amounts of heterogeneous data in ATM. It is based around
the data lake concept and includes “Ingest Adapters” where one ingest adapter is required
per file type. The ingest adapters process incoming files at ingestion time before they
are stored in the AWS hosted data lake which contains three different zones. The raw
data processing zone archives data as it is in a file system such as HDFS using a "file type
specific archiver". Only a subset of this data is stored in the processed data zone, which
requires processors for each file type. Special data preparations are done in the refined
data processing zone containing special analyzers. The processed and refined data is kept
in Elasticsearch/PostgreSQL. Analytics & Visualization applications such as SQL, Kibana
or Tableau enable insights on top of the data lake. The approach to treat different file
types differently is similar to the Engine concept in this thesis. However, it lacks indexing
support as it does not support extracting contexts out of ingested files.

Big data platform. An interesting pioneering work from 2011 presents ASTERIX, a scalable
"non-Hadoop" data platform for evolving-world models [46]. Nowadays, we would refer
to the system using keywords such as "big data" or "knowledge graph". Although it solves
a different problem, this project follows similar approaches as the architecture presented in
this thesis such as MapReduce computation and schema-variability. Also, ASTERIX comes
with its own semi-structured JSON-like data model and XQuery inspired query language
AQL. Instead of a central object storage and index store, the system is distributed across
metadata nodes and compute nodes connected via a high-speed network, each using its
own local disks for storage. This is not surprising as network accessible distributed storage
mechanisms were not as mature back then. The project is known as Apache AsterixDB
today2.

2https://asterix.ics.uci.edu/
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Knowledge graph (KG) online analytical processing (OLAP) is a concept invented by
Schuetz et al. [5] built on the fact that knowledge graphs are often context-dependent.
This section gives an overview of KG-OLAP with a focus on concepts important for this
thesis.

KG-OLAP provides a multidimensional view on knowledge graphs and extends con-
textualized knowledge graphs with OLAP and graph operations. Figure 3.1 shows a
KG-OLAP cube with the three dimensions time, geography and importance. The single
cells represent the contexts or the distinct graphs, each containing a set of RDF triples.
Contextual operations can be used for queries such as "obtain the knowledge for Feb 12 in
LOVV-2 classified as critical".

Figure 3.1.: KG-OLAP cube (Source: Own drawing based on existing figure [5])

The authors developed the KG-OLAP concept by focusing on two ATM use cases. The
first use case is pilot briefings. Prior to departures, pilots are briefed with different types
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of data such as NOTAMs or weather data. Without context-based filtering, pilots drown
in information. KG-OLAP should not only enable granular information selection based
on the context but also knowledge abstraction to further improve information quality. In
Use Case 2, air traffic flow and capacity management (ATFCM) employs post operational
analysis where large amounts of ATM knowledge is mined to learn from past operational
events. NOTAMs, weather data and flight data are used to analyze patterns such as the
main reason for flight delays in a specific region. The first use case is further described
in the next section while additional information for the second use case can be found in
Schuetz et al. [5].

The requirements analysis of this use cases led to seven functional requirements of KG-OLAP.
Next, a summary of those are given.

1: Heterogeneity. The system has no fixed schema. It allows multiple types of entities,
relationships and employs a variable schema.

2: Ontological knowledge. The inclusion of domain specific information or "schema
knowledge" in the KG is necessary.

3: Self-describing data. No external schema that defines the structure of the data is
present. Instead, the data contains metadata that describes it.

4: Modularization. Knowledge that is true in different scopes must be split into mul-
tiple modules. In other words, attaching knowledge to a context (=module) must be
supported.

5: General and specific knowledge. It must be possible to store knowledge on different
granularity levels. For instance, knowledge can be true for the entire country of Austria
not only for the Vienna airport. Querying for relevant knowledge of Vienna, general knowledge
valid for Austria has to be included in the result. This concept is called knowledge propa-
gation. Figure 3.2 illustrates how knowledge from more general contexts are implicitly
inherited to more specific ones. The boxes are the different modules or contexts annotated
with dimension members on different levels. The arrows indicate the inheritance. C1 -
C3 represent the knowledge of the three contexts. Knowledge with a solid line is bound
to the context while knowledge with a dotted line is inherited from a parent context via
knowledge propagation.
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Figure 3.2.: Knowledge propagation concept

6: Knowledge selection and combination. The system must provide query operations
for selecting and combining different modules (=contexts). In the paper, those are called
contextual operations and consist of the OLAP operations Slice’n’Dice and Merge (=Roll-Up).
Figure 3.3 shows the transformation of a KG-OLAP cube with Slice’n’Dice and Merge. For
better comprehension, the example contains the same initial KG-OLAP cube as illustrated
in the previous figure. The contextual operation Slice’n’Dice cuts certain cells out of the
cube to select a subcube of it. The input for this operation are members, or level to
value pairs. In the example, the members VIE: location and 2022-02: month are given.
These members then locate a specific coordinate in the cube. Every context at or below
the coordinate is considered as relevant context. Every relevant context then results in a
contextualized graph containing its own as well as inherited knowledge. The Slice’n’Dice
operation is defined slightly different in the referenced KG-OLAP paper where contexts
above the specified coordinate are also considered as relevant contexts. The Merge operation
is used to reduce the granularity of the cube. Mostly, Merge is used after Slice’n’Dice to
combine knowledge into a single resulting graph. The input for Merge are levels, where
each context on a more specific granularity is rolled up to the given level. In the provided
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example, the context VIE: location - 2022-02-02: day is rolled up to VIE: location - 2022-02:
month as month is given. The other context VIE: location - 2022-02: month does not have
to be rolled up to month as the time dimension is already on month level. Finally, equal
resulting contexts are merged into the same graph and duplicated knowledge is dropped.
The result is a single graph containing knowledge from C1, C2 and C3.

Figure 3.3.: KG-OLAP contextual operations

7: Knowledge abstraction. Query operations allow to obtain an abstract view of the
knowledge. The paper proposes three graph operations called Abstraction allows to re, Reifi-
cation and Pivoting. Abstraction replaces knowledge with more abstract entities. Reification
and Pivoting are special operations to preserve contextual or assertional knowledge after
a merge. These graph operations are not implemented in this thesis as they are no subject
to KG-OLAP cube distribution hence do not affect the resulting architecture. Further
information can be found in the KG-OLAP paper.
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Limitations of the current GraphDB implementation described by Schuetz et al. [5] are
mainly caused by the architecture and the resulting knowledge propagation on data
ingestion. GraphDB1 is a graph database or RDF triplestore hence the multidimensional
model had to be implemented to fit the graph’s data structure. Knowledge propagation
and reasoning was realized via materialization in dedicated named graphs storing inferred
knowledge for each context. Looking at Figure 3.2, the dotted context knowledge is not
logically derived from the hierarchy but physically inherited at ingestion. This led to a
non-linear increase in insertion time and a limit of less than 5 000 contexts or about 70
million triples in the test environment before it got unfeasible to maintain or to ingest more
data. Apart from performance limitations, the GraphDB only allows RDF triple insertions
but not raw data. To ingest NOTAMs in AIXM format or weather data in IWXXM format,
external preprocessing is necessary.

1https://graphdb.ontotext.com/
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This section broadly analyzes requirements and its solution approaches for a Big KG-
OLAP system. The requirements can be separated into KG-OLAP, big data and other
requirements. The KG-OLAP requirements include the seven functional requirements
of KG-OLAP defined in section 3. Big KG-OLAP extends KG-OLAP with the ability to
maintain big data workloads. Hence, it is essential for the system to address the V’s of
big data. The second section analyzes these non-functional requirements. In addition,
other requirements are examined. Based on the analysis, solution approaches for each
requirement are discussed which form the basis for the resulting architecture.

4.1. KG-OLAP requirements

KG-OLAP functional requirements defined in the referenced paper [5] are explained in
section 3. These seven bullet points derive from use cases in ATM and previous initiatives
and got generalized for the domain independent KG-OLAP concept. Big KG-OLAP
has to fulfill every requirement of KG-OLAP as well. However, the last requirement 7:
Knowledge abstraction does not affect architectural scalability issues [13]. Therefore, it is not
implemented in this thesis but part of further research to integrate it. This thesis focuses
on the first six KG-OLAP requirements.

1: Heterogeneity. This refers to the requirement of an open world assumption. To fulfill
this requirement, the authors of the KG-OLAP paper propose to use RDF. The format
is used to represent interconnect data on the web and has no fixed schema [47]. It can
be extended with any type of entity and relationship hence is not limited to structured
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homogenous data. Therefore, RDF is a good fit to fulfill KG-OLAP requirement 1. In this
thesis, RDF is also used as output format for contextual operations.

2: Ontological knowledge. Any data store needs some type of structure. In the semantic
web and knowledge graphs, this is called ontological knowledge. For instance, the triple
"VIE has status closed" is valid while "closed has status VIE" makes no sense. The web
ontology language (OWL) is a extensible format to describe such constraints. OWL can
be represented in RDF format, hence the use of RDF as data format for (Big) KG-OLAP
fulfills this requirement as well.

3: Self-describing data. The third requirement of KG-OLAP also targets the application
of knowledge graph technologies similar to the first and second one. In ATM, there
are different data formats employed and combined with a large amount of entities and
relationships, a fixed relational schema would soon reach its limits. Hence, it is important
to include schema knowledge in the data itself. This is possible in RDF. Besides assertional
knowledge (ABox), RDF allows to include terminological knowledge (TBox). Just like
usual graph knowledge such as "VIE has status closed" is it possible to add TBox knowledge
describing triples such as VIE is type Airport to the graph.

4: Modularization. The main contribution of KG-OLAP is the extension of modularized
operations to contextualized knowledge graphs. In the KG-OLAP paper, the authors
implement the modularization with GraphDB and SPARQL. This is a good fit as both
technologies work with contextualized knowledge graphs of RDF quads, but there are
limitations as discussed in section 3. In this thesis, the approach is different. Instead of
the obvious choice of graph technologies, an index store similar to the star schema in
traditional OLAP was chosen to maintain the multidimensional model. This allows to
insert knowledge independent of each other hence makes it possible to maintain larger
amounts of data.

5: General and specific knowledge. One requirement in ATM is that knowledge that is
valid for an entire region is also valid for every single route or airport within that region.
The system must allow on the one hand to insert data on different granularity levels and
on the other hand to inherit knowledge from higher levels (knowledge propagation). To solve
the first part, the implementation must accept hierarchies on each level and validate each
of them. For instance, the time hierarchy "2022:year → 2022-02:month → [EMPTY]:day" is
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valid while "2022:year → [EMPTY]:month → 2022-02-01:day" is not. Knowledge propaga-
tion is done on querying time rather than on insertion time. This enables constant insertion
times while it only has a limited impact on queries as the KG-OLAP cubes queried are
relatively smaller than the entire KG-OLAP cube stored. The knowledge propagation is
implemented as an iterative process where general contexts are bound to specific ones.
Both parts are realized on code-level and explained later in the thesis.

6: Knowledge selection and combination. In KG-OLAP it is important to retrieve a
relatively small cube of the entire cube. For instance, for efficient and effective pilot
briefings it must be possible to select data for a specific flight or at a specific location at
a given time and maybe other dimensions. The contextual operations in KG-OLAP are
Slice’n’Dice and Merge. The current GraphDB implementation utilizes SPARQL to perform
these operations. In this thesis, a different technical approach is taken. For contextual
operations, an own DSL named KGOQL is proposed. This language is based on SQL and
allows to specify Slice’n’Dice and/or Merge queries. The Slice’n’Dice part of a given query
is used to select contexts from the index store. The later one defines the resulting graph
granularity returned by the query.

4.2. Big Data requirements

Big Data can be defined by 3 Vs according to [11]. There exist further definitions in
literature and in practice adding more Vs to big data, but the referenced paper is the most
accepted basis definition and fits for this thesis. The three main components of big data
compared to traditional data workloads are Volume, Velocity and Variety.

Volume. The current KG-OLAP implementation has a limit of less than 5000 contexts
or tens of millions of triples. The goal of Big KG-OLAP is to get rid of these limitations.
Taking ATM as an example, NASA researchers processed data for 1342 flights which
resulted in about 2.4 million RDF triples [6]. With over 30000 flights per day on average
handled by Eurocontrol [7], the current system would reach its limits within hours, if
many new contexts are generated, or days at latest. Considering those numbers, the
potential amount of ATM knowledge in Europe generated within a year is above 12 billion
triples. To address the problem of volume, the GraphDB implementation is replaced by a
data lakehouse approach. Rather than storing triples centralized in a graph database, the
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idea is to store data in raw format, with metadata, indexing and caching above to speed
up queries. Figure 4.1 shows the high level architecture of the Big KG-OLAP lakehouse
based on the data lakehouse concept. Ingested data objects of any format are stored in raw
format in a cheap object store rather than in converted RDF format in a graph database
to keep operating costs low and scalability high. The layer on top of that shadows the
raw physical storage. Newly ingested data is categorized, its context gets extracted and
eventually the resulting indices are stored. Besides context extraction, the ETL-Engine also
does the mapping from the raw data into RDF. This is explained in detail in the Variety
paragraph. Also, recently used data gets cached in an RDF cache as it is considered as
more relevant.

Figure 4.1.: Big KG-OLAP Lakehouse (Source: Own drawing based on existing figure [15])

Velocity. Currently, the KG-OLAP implementation is monolithic and the data ingestion
rates rise with the amount of triples stored in the system. Apart from the amount of data,
there is a limit on how many triples can be inserted in a given time frame. Hence, it
is not scalable. This can be a severe problem for certain applications. For example, the
amount of data generated in ATM in Europe is approximately 30 million triples per day
(approximation based on numbers from two sources [6] [7]). Of course, the insertion
rate is not constant, but varies from day to day or even within hours. Because of that,
a Big KG-OLAP system has to be elastic. This means that it must be possible to scale
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the system up during times with large ingestion rates (e.g., holiday season) and down
during more quiet times (e.g., night). To achieve that, the system architecture has to
be distributed and horizontally scalable by design. Such service oriented architecture
(SOA) is shown in Figure 4.2. Services are split by functionality and are independently
replicable. There can be six instances of Service A while there is a single instance of
Service B. These services communicate over standard network interfaces such as HTTP.
The horizontal scalability of each service is essential to avoid bottlenecks and balance
demands precisely. For example, a lot of Service A instances are required during high
ingestion rates, while no Service C instance is required at all for this functionality. Inside
the system, programming paradigms such as asynchronous processing for data ingestion
and MapReduce for contextual operation processing enable the scalability on the code
level. Each of these services is operated on an elastic platform that allows automatic
scale-up and scale-down.

Figure 4.2.: Distributed and horizontally scalable system concept

Variety. A key requirement for Big KG-OLAP is its support for different data formats.
Currently, data is preprocessed and transformed into RDF before it is inserted into the
KG-OLAP GraphDB system. This is okay for small use cases but does not fit the idea of
big data well. Instead, the system should be standalone and independent of other ETL
processes, at least from an ingestion perspective. As mentioned beforehand, the data
lakehouse approach is a good architectural fit as it provides scalable storage and data
warehousing features. A key part of a data lakehouse are the integrated ETL processes. In
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Big KG-OLAP, the ETL part is called Engine and its concept is shown in Figure 4.3. The
Big KG-OLAP lakehouse basically accepts any data format. The only prerequisite is that
there is an implemented Engine for the given format. In the ATM example, there could
be two Engines, namely AIXM Engine and IWXXM Engine. A Big KG-OLAP lakehouse
with those two Engines will then accept exactly those two formats. The amount of Engines
per Big KG-OLAP lakehouse is unlimited. Basically, the Engine ensures data quality
and transforms the (unstructured) data into semi-structured data. On data insertion, the
metadata is extracted to categorize the data and choose the correct Engine. The Engine is
then used to extract the data’s context, resulting in one or more indices because one data
point can belong to multiple contexts, for instance many days. The sum of all contexts
form the multidimensional view on the virtual KG-OLAP cube. On querying, the data is
lazily mapped into RDF using the Engine.

Figure 4.3.: Big KG-OLAP Engine concept
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4.3. Other requirements

Apart from functional KG-OLAP requirements and non-functional big data characteristics,
there are additional requirements that the Big KG-OLAP lakehouse implementation must
fulfill.

Cube schema. The key configuration of a Big KG-OLAP lakehouse is the cube schema.
It defines the set of dimensions and levels of the multidimensional model as well as the
available hierarchies. This cube schema can not be hard-coded, otherwise the solution
is not generally applicable. It should rather be configurable and considered as slowly-
changing. Although the focus of this thesis is not to provide a production-ready solution,
there should still be no dimensions or hierarchies in the code to provide a strong foun-
dation for future efforts. The idea is to provide a configuration file with a definition of
the dimensions together with the levels. The Big KG-OLAP lakehouse system must be
able to interpret this file and dynamically adapt its behavior. An example of a dimension
is Location. The levels of the Location dimension in hierarchical order are Territory, Flight
Information Region (FIR) and Location. A Territory has many FIRs and a FIR in turn has
many Locations. In addition, the file must contain the available hierarchies which could
be stored in a database as well for more flexibility. Hierarchy definitions are necessary
to create hierarchies out of single members. For instance, it would not be possible to
infer the complete hierarchy from the member LOWW:Location. The hierarchy definition
Austria:Territory → LOVV:FIR → LOWW:Location is required to know that the location
LOWW:Location belongs to the fight information region LOVV and the territory Austria.

Cloud-native principles. As defined by a literature review study [17], a cloud-native
application (CNA) is a modern approach to designing an application specifically to
run in the cloud. It is characterized by its distribution, independent (micro-)services,
horizontal scalability, operation on an elastic platform and a limited number of stateful
services. In order to provide a usable foundation for future research efforts and production
deployments, the Big KG-OLAP lakehouse architecture and the prototype implementation
should follow those principles. Most of these requirements inherently come with the
need to support big data but cloud-native requirements are more specific. According to
them, the Big KG-OLAP lakehouse must be split into independent (micro-)services that are
horizontally scalable while the number of stateful services is kept to a minimum. Moreover,
operation on an elastic platform such as Kubernetes or selected Amazon Web Services
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is required. The approach to designing the Big KG-OLAP lakehouse as a cloud-native
application is to split it into stateless services that contain the business logic surrounded
by shared stateful services such as database or storage.

Application requirements for Big KG-OLAP system evaluation. The implemented Big
KG-OLAP lakehouse in this master thesis is a generic solution that can be tailored to any
use case. As mentioned previously, the only use-case-specific parts are the Engine(s) and
the Cube schema. Although the architecture and also the implementation can be applied
to any use case, it is essential to demonstrate its capabilities in a concrete one. In this
thesis, the implementation is demonstrated with the ATM use case: pilot briefings with
NOTAMs. It fits well with Big KG-OLAP as pilots always want to see a subset of the entire
information during a single briefing. Hence, pilot briefings require to select a relatively
small cube with information of interest out of the entire Big KG-OLAP cube, which is
exactly the design goal of this Big KG-OLAP implementation. Pilot briefings are conducted
with different data in the ATM domain. For simplicity, this thesis focuses on NOTAMs
in AIXM format. The Big KG-OLAP lakehouse should be able to extract the context of
NOTAMs in AIXM format and map them into RDF format. To solve that, an AIXM Engine
for NOTAMs has to be implemented. An engine consists of an Analyzer and a Mapper.
The Analyzer extracts the context out of a NOTAM while the Mapper transforms it into
RDF statements. Also, the cube schema must be defined accordingly to support the pilot
briefings use case.
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The contributions of this master thesis are a reference architecture for a Big KG-OLAP
lakehouse solution, a prototype implementation of this architecture and its performance
evaluation. In this section, the reference architecture and its components are explained in
detail as well as their interactions with each other. Afterwards, the two main functionalities
data ingestion and contextual operations and their processing in the Big KG-OLAP lakehouse
are described.

5.1. Architecture

Figure 5.1 shows the architecture of the Big KG-OLAP lakehouse. It consists of multi-
ple components, each fulfilling a specific functionality. These components form a stan-
dalone system that is independent of external services. The cuboids represent the self-
implemented stateless services Surface, Circulator and Bed that contain the business logic.
The Surface is the connection point to external components, the Circulator performs back-
ground processing tasks and the Bed service constructs RDF graphs. These services require
different stateful persistence services to store and manage data. A Job queue, an Object
storage, a Graph cache and an Index store are used for that purpose. Each of the mentioned
services must be horizontally scalable to support big data workloads. Apart from services,
the Big KG-OLAP lakehouse requires the Engines to be installed in the Circulator and the
Bed service and a Cube schema that defines the multidimensional model. On the top there
are Users, Applications and Streams that interact with the system via the Surface. The arrows
in the architecture represent the information flows.
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Figure 5.1.: Big KG-OLAP Lakehouse reference architecture

Surface. The Surface service is the single gateway to external services, users, applications,
streams, etc. All request from outside the Big KG-OLAP lakehouse including data ingestion
and Context operation requests arrive at the Surface service. Hence, it must provide an
interface that offers both these main functionalities and other helpful services (e.g. Cube
schema information) that can be used for different scenarios. An authentication protects
the endpoint from unauthorized access. Requests are interpreted, handled or passed
to other services, respectively and answered eventually. When the Surface receives new
data objects (data ingestion) it stores the ingested data object in the Object storage with a
generated unique identifier, reads metadata such as the data type from the requests and
adds a new Job queue entry before it completes the requests. To answer contextual operation
requests, the Surface parses the query, selects contexts from the Index store and requests the
graph for each context from the Bed service before it aggregates the result and returns it to
the requester.

Circulator. The Circulator service performs background tasks. Its main functionality is
to periodically read new data ingestion jobs from the queue and process them. For each
job, the Circulator reads the corresponding file from the Object storage, selects an installed
engine based on the file metadata and uses it to extract the hierarchies out of it. Afterwards,
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it calculates the context of the hierarchies and stores the resulting contexts and indices in
the Index store. Finally, the Circulator deletes the job from the queue and evicts the cache
for the calculated contexts. The Circulator service is also the component to include future
background processes such as data retention for instance.

Bed. The Bed service returns the graph for a given context. Similar to the Circulator, this
service is hidden from the user and requires engines to be installed. However, the Bed
service does not run as an asynchronous background process but rather as a synchronous
one that is required to perform Context operations. It receives graph queries from the Surface
service for a given context. The Bed service checks the Graph cache if the graph is cached
and returns it if so. Otherwise, it selects the corresponding data object identifiers from the
Index store and uses compatible engines to transform the data into RDF. Once every data
object is transformed, it returns the resulting graph back to the Surface.

Index store. The Index store basically memorizes the contexts, data object metadata
and its relationships. The relationship between Data object and Context is M:N. A single
relation between a data object and a context is called index. The Index store acts as the
data warehouse part in the Big KG-OLAP lakehouse architecture. Its logical design is
multidimensional and consists of dimension tables and a "fact" table. But instead of facts
such as numbers, the fact table contains data object identifiers that are used to find the
data objects in the Object storage.

Object storage. The Object storage stores the data objects in raw format and form the
data lake part of the system. The Surface receives new data objects and puts them into
the Object storage with a generated unique identifier. Once stored, the data object is not
changed anymore. The Circulator and the Bed service then read the data object from the
Object storage on demand and process it using the compatible installed engine.

Job queue. The Job queue records new data ingestion events. When a new data object is
ingested, the Surface service posts an event into the Job queue. This event or job is read by
the Circulator service. The event is retained in the queue until it is explicitly removed by
the Circulator. This ensures that no job is lost due to system failures.

Graph cache. The Graph cache temporarily stores graphs in RDF format for certain contexts.
It receives new entries from the Bed service and provides cached ones to it. The purpose
of the Graph cache is to provide a ready graph for a given context to the Bed so that it can

35



5. Big KG-OLAP lakehouse reference architecture

answer its queries faster. If there is no graph cached for a given context, the Bed service
has to read data objects from the Object storage and transform them into an RDF graph.

Engine 1 to n. The Engines are the ETL-adapters of the Big KG-OLAP lakehouse. The
number of Engines installed in one Big KG-OLAP lakehouse is not limited logically. Each
engine must be part of the Circulator and the Bed service. The Circulator uses the Engines to
extract hierarchies out of data objects while the Bed service requires Engines to map data
objects into RDF graphs. Hence, an Engine consists of two parts. A hierarchies extraction
and an RDF mapping part. Moreover, each engine must have an associated data type so it
can be linked to data objects.

Cube schema. The Cube schema defines the dimension, levels and hierarchies available
in a Big KG-OLAP lakehouse deployment. Based on this configuration, the system can
interpret contextual operations and infer hierarchies from members. The cube schema can
be static or dynamic, while it is recommended to keep dimensions and levels static and
hierarchies dynamic. If dimensions or levels are modified, the Big KG-OLAP lakehouse
needs to be re-indexed. On the other hand, adding hierarchies requires no additional
maintenance, while updating/deleting hierarchies results in minor migration steps.

Users, Applications and Streams. Any service or user that is capable and authorized
to communicate with the interface provided by the Surface can interact with the Big KG-
OLAP lakehouse. A widely adopted standard suitable for this interface is HTTP REST.
Usually, data generation streams send data ingestion requests constantly with varying
speeds. Applications and users employ contextual operation requests to gain interesting
information.

5.2. Data ingestion

data ingestion is one of the two main functionalities of the Big KG-OLAP lakehouse. The
system receives data objects from outside and ingests them. The ingestion includes
storage and indexing. The indexing is required to build the multidimensional model that
eventually enables Context operations. Figure 5.2 shows the data ingestion process in BPMN
(Business Process Model and Notation) notation. Apart from the two services Surface and
Circulator this process includes the Job queue, the Index store and the Object storage.
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The process starts once the Surface receives a new data object through a designed interface
(e.g., HTTP REST). Next, it reads the metadata and checks if there is an Engine installed for
the given data type. If not, the process ends and the requester receives an error message.
Otherwise, the Surface generates a unique identifier and uses it to store the data object
in the Object storage as every data object in the Object storage requires a unique identifier.
As a last task, the Surface registers the unique identifier of the data object as a new job in
the Job queue and completes the (HTTP) request. The following processing steps happen
asynchronously to the data ingestion request.

The Circulator periodically checks the Job queue for new jobs. Once it finds a new job, it
reads the job information. From that point on, the job must be invisible to other Circulator
instances to avoid duplicate processing. Based on the job information, the corresponding
data object is read from the Object storage. Next, the Circulator selects the compatible Engine
for the given data object and utilizes it to extract the hierarchies. A valid Hierarchy is
given when there is no missing value for any parent level. For instance, the hierarchy
"2022:year → 2022-02:month → [EMPTY]:day" is valid while "2022:year → [EMPTY]:month
→ 2022-02-01:day" is not. One data object may contain multiple hierarchies per dimension.
For example, one NOTAM can be valid for multiple days or across multiple locations.
After hierarchy extraction, the Cartesian product is calculated according to Figure 5.3,
where each hierarchy of one dimension is combined with each hierarchy of every other
dimension. The example shown in the figure contains three hierarchies for the Location
dimension and also three hierarchies for the Time dimension. In total, this results in nine
different contexts which are stored in the Index store right after together with the indices.
An index is the relationship between a data object and a single context. Subsequently, the
cached graphs from the Graph cache for every context found in the data object is evicted as
the graph misses the information from the new data object hence is not valid anymore. At
the end of the data ingestion process, the Circulator removes the job from the Job queue. If
the process is not successful or takes too long, the job gets visible again to other Circulator
instances. This concept ensures job durability and fault tolerance.
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Figure 5.2.: Data ingestion process
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Figure 5.3.: Cartesian product of Location and Time hierarchies

39



5. Big KG-OLAP lakehouse reference architecture

5.3. Contextual operations

Interpreting and answering contextual operation queries is the second main functionality of
the Big KG-OLAP lakehouse. The contextual operations are Slice’n’Dice and Merge while
both operations are part of the same KGOQL query. Similar to SQL, the Slice’n’Dice would
be the "WHERE" clause and Merge corresponds to the "GROUP BY" clause, respectively.
Also, as already described in section 3, Merge is performed after Slice’n’Dice. Figure 5.4
demonstrates the contextual operation querying process from the reception of the KGOQL
query until the return of the resulting RDF cube. A consistent example is illustrated
throughout this section for a better comprehension.

Figure 5.4.: Contextual operations process

40



5. Big KG-OLAP lakehouse reference architecture

The goal of contextual operations is to query an RDF cube of the Big KG-OLAP lakehouse.
For that, the system must contain data and in this example, the stored model consists
of five different contexts and data objects associated to them as shown in Figure 5.5.
Contexts as well as the data objects (can be one or many) associated to it are labeled as
C1 to C5. The multidimensional model has two dimensions namely Location and Time at
different levels. The Location dimension has three levels Country, City and Organization
while the Time dimension includes Year, Month and Day. The arrows in the figure represent
the hierarchical relationships between the contexts. For instance, C2 inherits from C1
because both of its members "2022-02:month" - "LNZ:city" roll up to the members of C1.
"2022-02:month" rolls up to "2022:year" and "LNZ:city" rolls up to "AUT:country". Another
example is that C5 inherits from C2, because "JKU:organization" rolls up to "LNZ:city"
while the time dimension is on the same level with the same value "2022-02:month". On the
contrary, C5 does not derive from C3 because "LNZ:city" does not roll up to "SBG:city".

Figure 5.5.: Stored cube example

The process starts at the Surface. The service receives a KGOQL query from an external
service, user, application or similar. The query used in this example is shown is listing
5.1.
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Listing 5.1: KGOQL query

1 SELECT time_month=2022-02 AND location_city=LNZ ROLLUP ON time_month

Parse KGOQL query. At first, the query parser extracts the SliceDiceContext and the
MergeLevels out of the query. Both are required for further steps. The SliceDiceContext
defines the exact coordinate to select the subcube from. In the given example, it is "2022-
02:month" - "LNZ:city". The MergeLevels are a map from dimensions to levels, in this
example time:month.

Select specific contexts. After query parsing the next step in the process is to select the
specific contexts from the Index store. For that, the Surface constructs a query that can
be understood by the Index store based on the SliceDiceContext. Figure 5.6 shows which
contexts are then returned by the query. Every context at or below the SliceDiceContext is
returned.

Figure 5.6.: Select specific contexts example

Select general contexts. Due to the functional requirement of knowledge propagation, it
is necessary to include knowledge from parent contexts. To achieve that, general contexts
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have to be selected from the Index store similar to the selection of specific ones. The
difference now is that only contexts above the SliceDiceContext are returned by the query.
The selection is shown in Figure 5.7.

Figure 5.7.: Select general contexts example

Merge and propagate. Once every relevant context is selected from the Index store, the
result structure can be calculated. This includes two steps within one task. These steps are
Knowledge propagation and Merge. This results in a mapping from each relevant context to a
final context. A final context or final graph is one cell in the resulting RDF cube. Both steps
are drawn as a combined task as they happen together per context in an iterative process.
For every specific context, every context that rolls up to it as well as itself is rolled up to
the MergeLevels and registered as a final context. The result is a map of specific contexts to
final contexts. After that, every general context is mapped to every final context as well
because every specific context per definition inherits from every general context. Figure
5.8 shows the result of this phase for the given example. It is a mapping from existing
contexts to final contexts.C2 does not inherit knowledge from another specific context
(C4 or C5) and can not be rolled up. Hence, the existing context C2 is mapped to the
final context "2022-02:month" - "LNZ:city". Next, C4 does inherit knowledge from C2
and can be rolled up to "2022-02:month" - "LNZ:city". Therefore, C4 and C2 are mapped
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to the final context "2022-02:month" - "LNZ:city". As this final context already contains
C2, the final context is not added again. C5 also inherits knowledge from C2 and can
be rolled up to "2022-02:month" - "JKU:organization". Hence, C5 and C2 are mapped to
the final context "2022-02:month" - "JKU:organization". As a last step, the general context
C1 is mapped to both final contexts "2022-02:month" - "LNZ:city" and "2022-02:month" -
"JKU:organization".

Figure 5.8.: Merge and propagate example

Query and aggregate RDF cube. For every specific and general context one RDF graph
request is sent to the Bed service together with its associated final graphs. For every
graph request, the Bed service reads the contexts and checks the Graph cache if an entry
for the given context exists. If yes, it uses the cached graph to answer the query faster.
Otherwise, the Bed service selects the indices associated to the contexts from the Index store,
loads the data objects and transforms them into a single RDF graph. Every data object is
transformed separately with the compatible Engine which is selected based on the data
type. The resulting graph is stored in the Graph cache to temporarily answer subsequent
queries for the given context faster. Now, regardless if the graph is read from the cache
or constructed from the data objects, it is returned to the Surface in RDF N-Quads format.
This format is line based and independent of any line order, which enables asynchronous
parallelization hence improves performance. The Surface then simply aggregates all the
lines it receives from the Bed services, drops duplicates and returns the resulting RDF cube
in N-Quads format to the requestor.

In the given example, the Surface service sends four different requests (C1, C2, C4, C5) to
the Bed service. The Bed service constructs the RDF triples or reads it from the cache and
then creates a graph for every given final context. In case of C1, C2 this results in two RDF
graphs one named "2022-02:month" - "LNZ:city" and the other one is "2022-02:month"
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- "JKU:organization". For C4 and C5, only one graph "2022-02:month" - "LNZ:city" and
"2022-02:month" - "JKU:organization" respectively is created. The RDF triples and resulting
graphs are used to construct RDF quads which are then sent back in N-Quads format to
the Surface where they are combined, resulting in an RDF cube with two named graphs.

Figure 5.9.: Query and aggregate cube example
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The second contribution of this thesis is the prototypical implementation of the proposed
Big KG-OLAP lakehouse reference architecture. This section discusses the overall imple-
mentation architecture in detail. The implementation of the two main functionalities data
ingestion and contextual operations is also part of this section. The resulting prototype is the
basis for future Big KG-OLAP research efforts. Hence, it is important that the resulting
artifact is maintainable, extensible and portable. For instance, external services must not
be tightly coupled to the code but should rather be subject to configuration. In general,
the implementation follows cloud-native application design principles. This modern
approach to develop applications ensures portability and operation in state of the art
cloud environments.

6.1. Architecture

Figure 6.1 shows the cloud-native prototype implementation architecture of the Big KG-
OLAP lakehouse. Its structure is designed to match the reference architecture but with the
obvious difference that concrete technologies replaced general components. The prototype
is developed with and deployed on Amazon Web Services (AWS) infrastructure. The
self-implemented core of the Big KG-OLAP lakehouse, the three services Surface, Circulator
and Bed are deployed on the AWS managed Kubernetes service Amazon EKS (Elastic
Kubernetes Service). All other required services are rented from AWS. The deployment
on AWS infrastructure allows performance evaluation of the prototype without physical
hardware and saves a lot of configuration and setup work. GitHub1 is used as version
control system to manage the source code of the services, engines, shared components,
configuration (including the YAML Cube schema) and deployment specification. The

1https://github.com/
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repository also contains an Angular UI (user interface) and two Java applications for
performance testing.

Figure 6.1.: Cloud-native implementation architecture

Amazon EKS and Linkerd. Amazon EKS is a managed Kubernetes service provided by
Amazon Web Services. Kubernetes clusters can be created and configured via the AWS
console. A cluster requires nodes to handle the workload. Based on computing demand,
a cluster has different types and quantities of nodes. For the performance evaluation
conducted in this thesis, a single node is used. This is further explained in section 7.
Once the cluster is up and running, a command line interface (CLI) allows to manage
Kubernetes resources remotely. Before deploying the services Surface, Circulator and Bed
additional installations are required for load balancing. The Surface provides a REST
endpoint while the Bed exposes a gRPC service. As both services must be horizontally
scalable, load balancing is required. For instance, if two Surface instances are running,
both processes should receive a similar amount of requests. The same behavior is required
for the Bed service and the Web UI. The Circulator has no interface, hence no load balancing
is required for this service. Load balancing HTTP/1.1 REST requests from outside the
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EKS cluster requires an application load balancer (ALB) that routes traffic on the ISO-OSI
model application layer. AWS provides a documentation how to install that. For cluster
internal gRPC load balancing, a different approach is required. Kubernetes offers the
so-called Service resource for automatic service discovery and load balancing by assigning
a single DNS name to a set of pods. However, this is a connection level load balancing
strategy that does not work for gRPC. The gRPC protocol is built on HTTP/2 which reuses
connections unlike HTTP/1.1. This is solved by installing the service mesh Linkerd on
the Kubernetes cluster which automatically performs application level (ISO-OSI level 7)
load balancing. The Amazon EKS deployment configuration used to deploy the Surface,
Circulator, Bed and Web UI is included and described in appendix B.2.

Surface. The Surface service is one of three self implemented Spring Boot based services.
This Java application contains a web server and is the entry point for external requesters.
A servlet offers HTTP REST endpoints for data ingestion, contextual operations and other
functionalities. Figure 6.2 shows the class diagram of the essential parts of the Surface
service as well as shared classes such as Context for better comprehension. The LakehouseC-
ontroller is the servlet that contains the HTTP REST endpoint methods. For data ingestion,
the servlet receives a MultipartFile object which contains the data and a HttpServletRequest
object with metadata including the data type. Those are not part of the diagram as they
are no self-implemented classes. The MultipartFile is directly stored in the object storage
using the StorageService and a new data ingestion job is posted into the MessagingService.
StorageService is the interface to access the Object storage while the MessagingService is the
bridge to the Job queue. Also, file metadata such as the original name and its size are
persisted using the Context Service. The DatabaseService is the interface to read from and
write to the AWS Keyspaces database. Besides the functionalities of the Index store it is used
for arbitrary features such as file metadata storage or logging. However, these features are
no essential part of the reference architecture, hence are omitted in section 5. For contextual
operations, the servlet receives a CubeRequest containing the KGOQL query as String and
passes it directly to the QueryService. The QueryService has a QueryParserService which
extracts the SliceDiceContext and MergeLevels out of the query. If the query is invalid, the
QueryParserService throws an InvalidQueryException instead. The SliceDiceContext is used to
query the specific and general Context objects from the DatabaseService. Together with the
MergeLevels these contexts are the input for the MergeAndPropagateService which returns
a MergeAndPropagateResult. For every entry in this result the GraphQueryServiceClient is
called which is the client interface to query graphs from the Bed service. If a request to the
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Bed takes longer than a configurable timeout for any reason, a GraphQueryTimeoutException
is thrown. Finally, the QueryService creates a CubeResult which is returned from the servlet
to the requester. Besides these classes there is a security configuration and a simple user
management to protect the endpoints from unauthorized access.

Figure 6.2.: Spring Boot service Surface class diagram

Circulator. The Circulator service is a Spring Boot services that performs background
processing tasks. Its main purpose is to periodically check the data ingestion queue and
process jobs. Not implemented background processes such as data retention would also
fit best in the Circulator service. Figure 6.3 illustrates the class diagram of the service’s
implementation and tightly coupled shared classes such as Engine or Context. The main
class is the DataIngestionScheduler which has a method that is scheduled to run periodically.
Within every method run, the MessagingService is checked if new data ingestion jobs are
available. If not, the method returns and runs again in a configurable interval. Otherwise,
the job is processed and the method recursively called again, as it is assumed that the
queue is not empty. To scale vertically, one method run does not only process one
job but a configurable number BATCH_SIZE (5 currently). Every job is then processed
simultaneously with multi-threading. Of course, the number of jobs that can be processed
in parallel is limited by the number of available processors. The ContextExtractionService
gets the file information as input, reads it from the StorageService, selects the compatible
Engine and creates a set of Context objects. These objects together with its associated file
indices are upserted in the DatabaseService and the cache entries for these contexts are
evicted via the GraphCache interface. An Upsert is a combination of Insert and Update
which enables parallel context insertion in this case. With a simple Insert it would not be
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possible that two simultaneously ingested files share the same context as one could not be
persisted in the database.

Figure 6.3.: Spring Boot service Circulator class diagram

Bed. The Bed service is the third Spring Boot service that returns RDF quads for a given
context identifier and final graphs. For that, it provides a gRPC service that is consumed by
the Surface service. The gRPC protocol is used over HTTP REST because it is more efficient
for high throughput due to connection re-usage and lightweight protobuf messages. Also,
it allows to compress transferred data which is especially useful for RDF quads that
contains repeating characters. Listing 6.1 contains the shared protobuf definition that
defines the service, the request and response format. The request message starts in line
6 and it contains the unique identifier of the current contextual operation for tracking
purposes, the given context ID and a set of final graphs to which the resulting RDF triples
are associated. The response starting in line 12 simply is a set of quads, where each quad is
represented as an independent line in RDF N-Quads format. Line 16 to 18 finally defines
the gRPC service. It is important to mention that it returns a stream of response objects, as
the Bed service returns the resulting RDF quad lines in chunks to avoid network overload
and keep the memory footprint low. The chunk size is configured based on gRPC best
practices found during a web search.

Listing 6.1: gRPC GraphQueryService protobuf definition

1 syntax = "proto3";

2 option java_multiple_files = true;

3
4 package at.jku.dke.bigkgolap.shared.grpc;

5
6 message GraphQueryRequest {

7 string queryUuid = 1;
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8 string contextId = 2;

9 repeated string graphs = 3;

10 }

11
12 message GraphQueryResponse {

13 repeated string quads = 1;

14 }

15
16 service GraphQueryService {

17 rpc queryGraph(GraphQueryRequest) returns (stream GraphQueryResponse);

18 }

Figure 6.3 shows the class diagram of the Bed implementation as well as important
dependent classes. The GraphQueryServiceImpl class extends from a generated class based
on the protobuf definition. An overridden method forms the entry point of the gRPC
request hence the connection point of the Surface service. The GraphService checks the
GraphCache if the connected MemoryDB for Redis has an RDF graph cached for the given
context ID. If not, the GraphService continues and queries the LakehouseFile objects from
the DatabaseService, which are the files associated to the context ID. These LakehouseFile
objects are passed to the FileLoaderService which selects the compatible Engine for every
single file object and uses it to transform the file content into an RDF graph. Finally, the
GraphQueryServiceImpl iterates the triples of the resulting RDF graph, generates a quad
for every triple and every final graph before it returns the final RDF quads back to the
Surface.

AWS Keyspaces. This prototype implementation uses the Cassandra compatible service
AWS Keyspaces as the Index store. Cassandra was chosen as an Index store implementation
over relational databases such as PostgreSQL due to its distribution by design and its
alignment for big data. AWS Keyspaces is a managed Cassandra services that requires a low
amount of configuration hence it is a good fit for a proof of concept. The service employs
a pay-per-use model and scales automatically in the background. The logical design of the
database is similar to a star schema in data warehousing. However, the NoSQL database
Cassandra does not support relations nor supports complex queries that do not include
the primary key. Hence, the data model has to be designed differently while it is optimized
for fast reads. Writes are always fast in Cassandra as it is an append-only database. Listing
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Figure 6.4.: Spring Boot service Bed class diagram

6.2 shows relevant parts of the logical data model in CQL (Cassandra query language).
First, the keyspace lakehouse is created and replicated within a single AWS region. This is
the default replication strategy. This keyspace contains a table for every dimension as well
as two additional tables for storing the "facts", which are file identifiers (as stored names).
The "fact" table is split up into two tables so that the Surface can upsert the file details in
the database before the context_hash is known. Every insert or update in Cassandra results
in an upsert and it is mandatory that the query includes every part of the primary key. The
primary key consists of a PARTITION_KEY and a CLUSTERING_KEY. The first attribute
of the primary key is the partition key while the remaining parts form the clustering key.
Because the context_hash is part of the primary key in the lakehouse.files table, file details
could not be inserted by the Surface before the Circulator successfully calculates the context
and upserts the index (= combination of context and file). The data model employs hashes
to support simultaneous upserts and reads. Every hierarchy (=entry in a dimension table)
as well as every context has a unique hashed based on its values. A context hash is the
hash of the associated hierarchies. If two Circulators ingest two independent files with the
same context it would result in the same hierarchy and context hashes. The latest upsert is
going to be the eventual value but because both upserts set the same values it does not
matter. Only the two inserted indices in the lakehouse.files table will stay, both having the
same context hash.
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Each dimension table is designed similarly. The partition key is always the highest level of
the dimension and Cassandra uses it to shard a table across multiple nodes. The remaining
levels are used as clustering keys in hierarchical order. Cassandra sorts entries within one
partition based on them. In case of TIME it makes sense to sort descending by month and
day to find more recent entries faster. A special characteristic in this design is that there
is no dedicated table necessary that stores the context. Each hierarchy rather knows to
which contexts it is associated to and on querying, the intersection of the context hashes
of each hierarchy is the set of existing context hashes. These context hashes are used
later on to query files from the lakehouse.files table, which works because the context hash
is the partition key in this table. It is worth to mention that both file tables contain the
engine_type which is a designed redundancy to save requests.

Listing 6.2: AWS Keyspaces Cassandra data model excerpt in CQL

1 CREATE KEYSPACE IF NOT EXISTS lakehouse WITH REPLICATION = { ’class’ : ’

SingleRegionStrategy’ };

2
3 CREATE TABLE IF NOT EXISTS lakehouse.time

4 (

5 year INT,

6 month VARCHAR,

7 day BIGINT,

8
9 hash VARCHAR,

10 context_hashes SET<VARCHAR>,

11
12 PRIMARY KEY (year, month, day)

13 ) WITH CLUSTERING ORDER BY (month DESC, day DESC);

14
15 CREATE TABLE IF NOT EXISTS lakehouse.location

16 (

17 territory VARCHAR,

18 fir VARCHAR,

19 location VARCHAR,

20
21 hash VARCHAR,
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22 context_hashes SET<VARCHAR>,

23
24 PRIMARY KEY (territory, fir, location)

25 );

26
27 CREATE TABLE IF NOT EXISTS lakehouse.topic

28 (

29 category VARCHAR,

30 family VARCHAR,

31 feature VARCHAR,

32
33 hash VARCHAR,

34 context_hashes SET<VARCHAR>,

35
36 PRIMARY KEY (category, family, feature)

37 );

38
39 CREATE TABLE IF NOT EXISTS lakehouse.files

40 (

41 context_hash VARCHAR,

42 stored_name VARCHAR,

43
44 engine_type VARCHAR,

45
46 PRIMARY KEY (context_hash, stored_name)

47 );

48
49 CREATE TABLE IF NOT EXISTS lakehouse.file_details

50 (

51 stored_name VARCHAR,

52
53 engine_type VARCHAR,

54 original_name VARCHAR,

55 size_bytes bigint,
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56 PRIMARY KEY (stored_name)

57 );

Amazon S3. Amazons Simple Storage Service (S3) acts as the Object storage in the Big
KG-OLAP lakehouse prototype implementation. It is highly scalable, cost-efficient and
provides a simple API. Amazon S3 mainly operates with the two concepts Bucket and Key.
On data ingestion, a unique identifier is calculated for the file. The identifier is the Key
under which the file is then stored in the configured Bucket. From a code-perspective
shown in Figure 6.5, there is a S3StorageService class which implements the StorageService
interface. The LocalStorageService was implemented for local development and uses the
file system underneath and mocks an "object storage". Based on the active Spring profile,
a different implementation is used. This approach also allows to replace the Amazon S3
implementation with other Object storage solutions easily. In future efforts, a tiered storage
service could be implemented where files are fetched from Amazon S3 and temporarily
stored on the local file system to increase read performance.

Figure 6.5.: StorageService hierarchy class diagram

Amazon SQS. The Amazon Simple Queue Service (SQS) is used as Job queue for data
ingestion jobs. Similar to Amazon S3 the Amazon SQS service is also scalable, cost-efficient
and reliable using a similar API. The Surface sends events about new data ingestion jobs via
HTTP to a configured Amazon SQS queue where the Circulator reads it from. A message
contains the file Key as well as the type. The Circulator then simply requests the file with
the given Key from the configured Bucket, selects the Engine based on the given type and
performs the context extraction afterwards. The file type is part of the message to save
database read requests.

Amazon MemoryDB for Redis. The key-value in-memory cache technology Redis2 was
chosen as Graph cache. Amazon offers a service called Amazon MemoryDB which is a

2https://redis.io/
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managed Redis service with durable storage. The Java library Jedis3 provides straight
forward operations on a Redis cluster. Graphs are cached per context. The context
identifier is the key in the key-value cache while the graph is the value. Graphs are stored
in RDF Thrift format which is an efficient binary data encoding format for RDF [48].
Figure 6.6 contains the class diagram of the GraphCache. Depending on the active Spring
profile, either a configured Redis endpoint is used in RedisCache as the graph cache or a
placeholder implementation NoCache is activated that does not do anything. The NoCache
class is used to turn off graph caching.

Figure 6.6.: GraphCache hierarchy class diagram

Engine architecture and AIXM implementation. The Engines are the ETL-Adapters of the
Big KG-OLAP lakehouse. In this prototype implementation, Engines are Java libraries that
are included as runtime dependencies in the Spring services. The Spring services then use
the java.util.ServiceLoader class to load every Engine implementation on the classpath and
instantiates them. All Engine objects are then stored in a map together with an identifier
as the key. The key matches data types so that services can search the capable Engine in
the map based on a given data type. Figure 6.7 shows the class diagram of the Engine
architecture and the concrete AixmEngine implementation. The Engine interface has three
methods, one to get the unique identifier to match it with data types, one to get the
Analyzer and the third one to retrieve the Mapper instance. Generics ensure type safety. The
Analyzer is the part of the Engine that extracts the context out of a data object. Its return
type AnalyzerResult consists of a set of Hierarchy objects with which the Cartesian product
is calculated in a later step to get the final set of contexts. The Mapper gets an intermediate
Apache Jena4 Model as input and it uses it to create and append RDF resources. Apache
Jena is an open source Java framework to build graph based applications. While both
services Circulator and Bed use the Engine architecturally, the Circulator only utilizes the
Analyzer and the Bed makes use of the Mapper.

3https://github.com/redis/jedis
4https://jena.apache.org/

56



6. Cloud native prototype implementation

Figure 6.7.: Engine and AixmEngine class diagram

Ingested digital NOTAMs or DNOTAMs are processed by the AixmEngine. Both the
AixmAnalyzer and the AixmMapper are based on a SAX parser (Simple API for XML). The
AixmSAXContextExtractor used by the AixmAnalyzer contains the required domain knowl-
edge to extract the Location, Time and Topic out of it with the SAX parser. The AixmAnalyzer
then uses the Cube schema to build the hierarchies. Every element is checked line by line
and relevant information gets extracted. A more complex task is to map the DNOTAM into
RDF which is done by the AixmMapper or AixmToRdfSAXParser. The prototypical mapper
supports three concepts "aixm:availability", "aixm:activation", "aixm:annotation". The SAX
parser implementation creates RDF resources for every child element of a supported
concept recursively as well as for important parent elements. Due to the structure of a
DNOTAM that the direct children of "Subject" element always are "Predicates" in lower
case and vice versa, RDF triples generation fits naturally.

Cube schema. The Cube schema defines the multidimensional model of the Big KG-OLAP
lakehouse. For portability and to support different use cases, it should be configurable.
As a first step, the Cube schema is defined in a YAML file and interpreted automatically by
the Spring Java services. The logical design of the Cassandra database is not automatically
derived from it yet but due to its design it is easily possible to automatically create
dimension tables based on the Cube schema in a future effort. An excerpt of the current
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Cube schema is included in listing 6.3. The schema includes the dimensions with its
corresponding levels which in turn must contain its parent level and Java data type. Also,
all hierarchies must be specified. Because those are dynamic and subject to change they
should be moved into a database in the future. The Time dimension is a special case. It is
not necessary to configure every day in history as a hierarchy but the application code
rather recognizes it as Time dimension and automatically infers hierarchies.

Listing 6.3: YAML Cube schema excerpt for ATM use case

1 schema:

2 dimensions:

3 location: # dimension

4 territory: # level

5 rollUpLevel: ALL

6 javaDataType: String

7 fir:

8 rollUpLevel: territory

9 javaDataType: String

10 location:

11 rollUpLevel: fir

12 javaDataType: String

13 topic:

14 category:

15 rollUpLevel: ALL

16 javaDataType: String

17 family:

18 rollUpLevel: category

19 javaDataType: String

20 feature:

21 rollUpLevel: family

22 javaDataType: String

23
24 time:

25 year:

26 rollUpLevel: ALL

27 javaDataType: Year
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28 month:

29 rollUpLevel: year

30 javaDataType: YearMonth

31 day:

32 rollUpLevel: month

33 javaDataType: LocalDate

34
35 hierarchies:

36 location:

37 - territory: Austria

38 fir: LOVV

39 location: LOWW

40 - territory: Germany

41 fir: EDGG

42 location: EDGP

43 ...

44
45 topic:

46 - category: AirportHeliport

47 family: AirportHeliport

48 feature: NonMovementArea

49 - category: Routes

50 family: EnRoute

51 feature: RouteSegment

52 ...

This Cube schema in YAML format is loaded by the CubeSchemaReader. The reader class
parses it into a Java RawCubeSchema which in turn serves as input for the CubeSchema. A
CubeSchema consists of a set of Level objects. These classes and all other classes that are
important in this context are shown in the class diagram in Figure 6.9. A Level knows
its dimension, identifier, data type, depth and to which Level it rolls up to. The depth
is important to order levels within a dimension for database queries. Member objects
represent level to value pairs. A Hierarchy is a set of Member objects but it is only valid
if it contains members of the same dimensions, only one member per dimensions and
misses no members that another rolls up to. If one of these constraints is not satisfied,
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a HierarchyInvalidException is thrown. For simplicity, this class is not included in the
diagram. A combination of one Hierarchy object per dimension is called Context. A context
represents a coordinate in the virtual KG-OLAP cube. The SliceDiceContext is a special
case where missing hierarchies are not substituted with a hierarchy on the ALL level. For
instance, a Slice’n’Dice query that only slices the Time dimension should return all the data
for the given time regardless of the Topic and Location. If missing hierarchies would be
substituted, only contexts on the ALL level in the Topic and Location dimension would
be returned for the same query. A StoredHierarchy is similar to a Hierarchy but with the
difference that it knows to which contexts it is associated. The usage of this is class further
explained in section 6.3. A MergeLevels object consists of a map of dimension to level
entries which is used for contextual operations. Finally, the RollUpFun holds the knowledge
to roll up a given Member to its parent one. For that, it uses the hierarchies defined in
the Cube schema and an input Member to construct the parent Member object. This class
also holds the special handling of Time members which do not require explicitly defined
hierarchies to roll up a member.

Angular UI and Java apps. An Angular UI, a Java file uploader and a Java context operation
performance test were implemented to test the usage of the prototype and run performance
evaluation tests. The Angular UI is a web interface that allows the user to upload files
(for data ingestion) and enter KGOQL queries (for contextual operations). Currently, the
only data type that can be selected is AIXM. Moreover, there is a query log on the right
side that shows interesting parameters of recently processed contextual operations, two
graphs on the bottom that plots data ingestion times and general statistics about the Big
KG-OLAP lakehouse below the headline. Besides functionality, there is a dynamic syntax
documentation how to use the KGOQL based on the underlying Cube schema collapsed
under the text area together with a few static examples. The screenshot shows the overview
of the Angular UI with the mentioned functionalities. Underneath the Query cube button
appears the query result in plain RDF N-Quads format (stripped to 1000 lines to avoid UI
overload) together with the result size in quads and mebibytes.

Two Java applications Java file uploader and Java context operation performance test support
the process to evaluate the performance of the cloud-native Big KG-OLAP lakehouse. The
first one is a single class Java application that uploads files to a configured Surface endpoint.
During the performance test in section 7, multiple of those instances are started to test the
limits of the REST service. The latter one is a complete automatic script that autonomously
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Figure 6.8.: Cube schema class diagram

runs contextual operation tests. It can communicate with the Kubernetes cluster and the
Surface services. During the test run it restarts running Kubernetes instances, scales
services, evicts the Graph cache and sends contextual operation queries to the configured
Surface endpoint without manual interaction.
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Figure 6.9.: Big KG-OLAP lakehouse Angular UI

6.2. Data ingestion

The Surface provides an HTTP POST REST endpoint to upload data object as files. The
HTTP POST file upload request also must contain a parameter called type. This parameter
specifies the data type hence which Engine is used to analyze or map the file, respectively.
The Surface also checks immediately if there is an Engine installed for the given type and
fails the request if not. Otherwise, the file is stored on Amazon S3 under a generated
Key and its details such as file size and original name are stored in the Amazon Keyspaces
database. Finally, the file key and the type are sent as a single message to the Amazon SQS
queue and the request returns the successful status code 200.

The Circulator service class DataIngestionScheduler has a method called ingest with the
Spring Scheduled annotation that is scheduled to run every 100 milliseconds after the last
method run finishes. Figure 6.10 shows the important method calls that happen during a
single data ingestion cycle in the Circulator service. The first statement in the ingest method
is to poll a configurable number of new files (currently the BATCH_SIZE is 5) from the
SqsMessagingService. The polled files are then processed in parallel using the Java parallel
stream functionality. Every file is passed to the ContextExtractionServiceanalyze method.
This method loads the file from the S3StorageService and the compatible Engine (currently
AixmEngine is the only one) and uses it to extract the relevant Member objects out of the
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file. These Member objects are transformed into complete Hierarchy objects using the Cube
schema knowledge. The Cartesian product of all Hierarchies result in a set of Contexts which
is the output of the ContextExtractionServiceanalyze method. Every Hierarchy has a unique
hash based on its Member values. The hash function used to calculate the hash it not the
default Java hashCode function but the 160-bit SHA-1 function because the default 32-bit
hashCode implementation is not collision-save enough to be used as a unique ID while SHA-
1 practically is [49]. A Context in turn is also identified by a hash based on the hashes of the
Hierarchies it consists of. The use of hashes as IDs enable parallel upserts of equal contexts
by multiple Circulator instances. Once the ContextExtractionServiceanalyze method returns,
the DatabaseServiceupsertContext method is called. Every Hierarchy is stored independently
using the Member values as primary key. The database entry also contains the Hierarchy
hash as well as a set of Context hashes to which it is associated to. This is important for later
Context operations. Also, the Context hash is stored in an own table for statistical purposes.
Afterwards, the relationships between every context and the file identifier are stored
(=indices) using the DatabaseServiceupsertFile method. If every operation is successful,
cached graphs for the contexts are evicted with RedisCachedeleteCachedGraphs and the job
is deleted from the queue with SqsMessagingServicedeleteMessage. Otherwise, if at least one
operation fails, the cache is not touched and the message is not deleted from the queue.
The message is then processed again after a configurable visibility timeout by the same
or another Circulator instances. Due to the hash-based upsert strategy it is no problem if
a subset of the database requests were successful because the overriding requests have
the same hashes hence the database records are equal to the previous ones. Finally, if the
number of polled files matches the BATCH_SIZE, the DataIngestionScheduleringest method
calls itself recursively as it is assumed the queue is not empty. This increases the ingestion
speed. If not, the method is scheduled to run again 100 milliseconds later.
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Figure 6.10.: DataIngestionScheduler method calls

6.3. Contextual operations

The second main functionality of the Big KG-OLAP lakehouse prototype implementation
is the processing of contextual operations. The Surface provides an HTTP POST REST
endpoint that accepts a JSON body containing a KGOQL query. It returns RDF quads
in N-Quads format as plain text. This subsection explains the implementation of the
contextual operations. To better comprehend it the same continuous example as in section 5
is used throughout this subsection. The KGOQL query is shown again in listing 6.4. For
reference, the KGOQL grammar is described in appendix A.

Listing 6.4: KGOQL query

1 SELECT time_month=2022-02 AND location_city=LNZ ROLLUP ON time_month

Parse KGOQL query. The query can be a simple Slice’n’Dice operations or contain a roll
up clause to add the Merge operation. The Surface service contains an implementation to
interpret KGOQL queries in the QueryParserService class. It extracts and constructs the
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SliceDiceContext and MergeLevels. In the given example, the constructed SliceDiceContext
is "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city". The QueryParserService
utilizes the CubeSchema to infer the complete Hierarchies from the extracted Members.
Without the complete Hierarchies it would not be possible to generate the necessary
database statements to select the corresponding contexts. The MergeLevels are a map from
dimensions to levels, in this example time:month. The SliceDiceContext is the input to query
the specific and general contexts from the Amazon Keyspaces database.

Select specific contexts. The goal of this step is to find any stored context that is located
at or underneath the given SliceDiceContext coordinate. Because contexts are stored in
distributed dimension tables and the NoSQL database does not support joins, one query
per dimension is necessary. For every dimension that is present in the SliceDiceContext,
queries are mapped according to the Hierarchies it contains. The query mapping from
the Hierarchies to the CQL queries is illustrated in Figure 6.11. For every dimension in
the SliceDiceContext, the Hierarchies at or below the coordinate together with its hash and
associated context_hashes are selected. A Hierarchy knowing its associated context_hashes
is represented as a StoredHierarchy object in the code. A special case are absent dimen-
sions (e.g., if the query would not contain the clause location_city=LNZ the LOCATION
dimension would be absent) where every existing Hierarchy is selected from the database.
Knowing the Hierarchy of absent dimensions is required later for RDF cube construction.
Now that every relevant Hierarchy is known, the Cartesian product is calculated. This re-
sults in a set of potential existing Contexts. Finally, the intersection set of the context_hashes
of the potential Contexts is calculated which results in a subset of complete Context objects
that actually exist in the Big KG-OLAP lakehouse.

Figure 6.11.: Select specific contexts CQL queries based on SliceDiceContext

The three specific contexts returned by this step are shown in listing 6.5.
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Listing 6.5: Selected specific contexts

1 C2: "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"

2 C4: "2022:year -> 2022-02:month -> 2022-02-01:day" - "Austria:country ->

LNZ:city"

3 C5: "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"

Select general contexts. The difference between the previous step and this one is that the
general contexts refer to any context above the SliceDiceContext (instead of at or below). For
that, one or more queries are built per dimension present in the SliceDiceContext to retrieve
the required hierarchies from the database. Figure 6.12 shows the CQL queries that are
generated based on the given Hierarchies in the SliceDiceContext. The first query selects
the Hierarchy at the SliceDiceContext while the following ones target each levels above.
Selecting dimensions that are absent in the SliceDiceContext is not required in this case
because only the context_hashes are required later on. Once again, the Cartesian product of
the Hierarchies per dimension is constructed to know the potential general context_hashes.
Because Hierarchies can be absent in the Cartesian product, Context objects can not be
created as a Context is only valid if it contains one Hierarchy per dimension. This is no
problem as for general context, only the context_hashes are required in a later step. The
Cartesian product is the input for the intersection of the context_hashes which results in a
subset of them. This subset of context_hashes represent the IDs of the general context for the
given SliceDiceContext.

Figure 6.12.: Select general contexts CQL queries based on SliceDiceContext

The single general context returned by this step are shown in listing 6.6.
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Listing 6.6: Selected general context

1 C1: "2022:year" - "Austria:country"

Merge and propagate. This step includes two tasks, merging contexts up to the given
MergeLevels and propagate knowledge from generic contexts to specific ones. Listing 6.7
shows the Merge and propagate algorithm in pseudocode. The first outer loop goes through
every specific context and creates a map entry in the result for it. The inner loop also iterates
every specific context and checks if the current one rolls up to or is equal to the outer one. If
yes, the inner context is rolled up to the given MergeLevels and registered as special context.
A special context describes a context that derives knowledge from a generic one. The distinct
resulting special contexts are then mapped to the outer context. The intermediate result is
a mapping from every specific context (=context at or under the SliceDiceContext) to itself
and any other specific context underneath it to which it propagates its knowledge taking
the Merge step into consideration. The intermediate result is added as comment (lines
starting with a hashtag) in listing 6.7 line 13 - 17. The context C2 propagates its knowledge
to two graphs whereas C1 and C2 to one, respectively. In the final step, one result mapping
from every general context to all existing graphs is added because the general contexts are
always more generic than the previous created graphs. The final result looks as shown
in the same listing line 24 - 29. Both C1 and C2 propagate their knowledge to the final
graphs "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city" and "2022:year ->
2022-02:month" - "Austria:country -> LNZ:city -> JKU:organization". Knowledge of C4 is
added to "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city" while C5 is linked
to "2022-02:month" - "Austria:country -> LNZ:city -> JKU:organization". This mapping is
returned as MergeAndPropagateResult.

Listing 6.7: Merge and propagate pseudo code

1 result = [:]

2
3 # merge and propagate specific knowledge

4 For Each ctx in specificContexts

5 specialCtxs = []

6 For Each potentialSpecialCtx in specificContexts

7 If (ctx == potentialSpecialCtx Or potentialSpecialCtx.rollsUpTo(ctx)

) {

8 potentialSpecialCtx.rollUpTo(mergeLevels)
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9 specialCtxs.Add(potentialSpecialCtx)

10 }

11 result.put(ctx, specialCtxs)

12
13 # intermediate result mapping

14 # [C2:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"]

15 # [C2:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"]

16 # [C4:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"]

17 # [C5:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"]

18
19 # propagate general knowledge

20 For Each ctx in generalContexts

21 result.put(ctx, result.values())

22
23 # final result mapping

24 # [C1:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"]

25 # [C1:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"]

26 # [C2:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"]

27 # [C2:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"]

28 # [C4:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city"]

29 # [C5:"2022:year -> 2022-02:month" - "Austria:country -> LNZ:city -> JKU:

organization"]

30
31 Return result

Query and aggregate RDF cube. The previous result is the input for this MapReduce step.
For every distinct context in the MergeAndPropagateResult, one gRPC request is sent to the
Bed service. Those requests are sent asynchronously and in parallel to utilize the horizontal
scalability of the Bed. Thread-safe java.util.concurrent.CountDownLatch objects ensure on
the Surface side that the main thread waits until every request is completed. The Bed
service returns chunks of RDF quads in N-Quads format until it completes. This process
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is described in the following paragraph. These RDF quads are added to a thread-safe set
implementation which per definition automatically drops duplicate quads. In addition to
this context-dependent knowledge, context information about the graphs themselves is
added to the default graph. For instance, the default graph then contains the knowledge
that the graph "2022:year -> 2022-02:month" - "Austria:country -> LNZ:city" contains the
member "2022:year". Finally, the Surface streams the resulting RDF cube in the line-based
RDF N-Quads format to the requesting Surface instance. An example result is presented
in listing 6.8. The first 9 lines show the metadata of the graphs in the default graph (no
named graph at the end of the line) followed by context-dependent knowledge in form of
four RDF quads associated to either one of the two named graphs. The dot at the end of
each line completes the RDF statement.

Listing 6.8: Example RDF cube in RDF N-Quads format

1 <uri:bigkgolap/context/context1> <uri:bigkgolap/time_year> "2022" .

2 <uri:bigkgolap/context/context1> <uri:bigkgolap/time_month> "2022-02" .

3 <uri:bigkgolap/context/context1> <uri:bigkgolap/location_territory> "

Austria" .

4 <uri:bigkgolap/context/context1> <uri:bigkgolap/location_city> "LNZ" .

5 <uri:bigkgolap/context/context2> <uri:bigkgolap/time_year> "2022" .

6 <uri:bigkgolap/context/context2> <uri:bigkgolap/time_month> "2022-02" .

7 <uri:bigkgolap/context/context2> <uri:bigkgolap/location_territory> "

Austria" .

8 <uri:bigkgolap/context/context2> <uri:bigkgolap/location_city> "LNZ" .

9 <uri:bigkgolap/context/context2> <uri:bigkgolap/location_organization> "JKU

" .

10 <uri:bigkgolap/entity#ID1> <http://www.w3.org/1999/02/22-rID2-syntax-ns#

type> "Inhabitants" <uri:bigkgolap/context/context1> .

11 <uri:bigkgolap/entity#ID1> <uri:bigkgolap/entity#number> 200000 <uri:

bigkgolap/context/context1> .

12 <uri:bigkgolap/entity#ID2> <http://www.w3.org/1999/02/22-rID2-syntax-ns#

type> "Established" <uri:bigkgolap/context/context2> .

13 <uri:bigkgolap/entity#ID2> <uri:bigkgolap/entity#number> 1966 <uri:

bigkgolap/context/context2> .
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The Bed service operates in the background. It utilizes the Engines to transform files
associated to a given context into RDF models. Next, it iterates over every triple in the
RDF model and constructs quads for the given final graphs. These RDF quads are written
in N-Quads format and sent back to the Surface service in chunks of approximately 40
KiB because the optimal size for streaming large payloads appears to be 16 - 64 KiB [50].
However, due to code specifics it is not possible to efficiently track the real size of chunks.
Instead, the lines per chunk are tracked. With two bytes per character and roughly 300
characters per line this results in about 70 lines per chunk. Additionally, the chunks are
compressed with Gzip because it can obtain significant compression ratios of x8-x10 on
RDF N-Quads [48].
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An essential part of this thesis and the third contribution is the performance evaluation of
the cloud-native Big KG-OLAP lakehouse prototype implementation. More precisely, the
scalability of the two main functionalities data ingestion and contextual operations is tested.
For that, some features were added to the prototype such as additional logging or REST
endpoints for test automation. The tests were conducted exclusively with AWS resources
and the setups are described before each test.

7.1. Data ingestion

This section covers the scalability of the data ingestion functionality. To evaluate the
capability to ingest a large amount of data, it is necessary to reveal the limits of involved
components. Those are the Surface and the Circulator. Hence, the evaluation is split into
two independent tests. The first test focuses on the Surface while the second one targets
the Circulator. Logically, there is the Amazon SQS job queue between both services in
the data ingestion process. To ensure an independent evaluation, the Circulator services
is scaled down to zero instances during the Surface tests, which means the Amazon SQS
job queue fills up steadily with every ingested file. The persisted jobs are eventually
processed during the Circulator tests when no file is uploaded anymore at the time of
testing. Subsection 1 evaluates the scalability of the Surface while subsection 2 covers the
Circulator.

7.1.1. File upload (Surface)

In this test, files are uploaded to the Surface’s HTTP POST REST endpoint for data ingestion
using the Java file uploader. The Surface simply processes the requests, stores the file in

71



7. Performance evaluation

the configured Amazon S3 bucket and registers an event in the Amazon SQS job queue
before it completes the request. The goal of this test is to reveal how many files can be
uploaded successfully to one or more Surface instances on a single machine. For that, a
self implemented Java file uploader is employed. It is a simple Java application that loads
files from a configured source and sends HTTP POST requests to a configurable endpoint.
The requests are sent asynchronously to simulate a high throughput. The test strategy is
to upload files for five total minutes and calculate the average and median throughput
per minute afterwards. Then, change the test setup, e.g. increase the number of Java file
uploader instances. The starting test setup looks as follows.

Big KG-OLAP lakehouse:

• Deployment according to appendix B.2 and section 6

• One Amazon EKS cluster node m5.4xlarge: 16 vCPU, 64GiB memory, Up to 10 Gigabit
(Amazon Linux 2 x86_64 OS)

• 1 Surface instance

• 0 Bed instances

• 0 Circulator instances

• 1 Angular web UI instance

Java file uploader:

• EC2 (Elastic Compute Cloud) instance c5.4xlarge: 16 vCPU, 64GiB memory, Up to 10
Gigabit (Amazon Linux 2 x86_64 OS)

• 1 file uploader instance

Test 1

Purpose. Test how many files one Java file uploader can send per minute.
Test time frame. 13:53 – 13:59 The test time frame includes setup at the beginning and tear
down at the end. This is the same for every test.
Observation time frame. 13:54 – 13:58 The actual observation time between setup and
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tear down. This is the same for every test.
Uploads per minute within observation time frame. (visualized in Figure 7.1)

• Total: 358, 374, 359, 366, 361

• Average: 363.6

• Median: 361

Evaluation. About 364 uploads per minute are possible with one surface and one Java file
uploader instance running on the two separate nodes.

Figure 7.1.: Surface performance test 1

Test 2

Purpose. Test how many files one Surface instance can ingest on one machine.
Java file uploader setup change 5 Java file uploader instances
Test time frame. 13:53 – 13:59
Observation time frame. 13:54 – 13:58
Uploads per minute within observation time frame. (visualized in Figure 7.2)

• Total: 1679, 1698, 1816, 1730, 1744

• Average: 1733.4

• Median: 1730
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Evaluation. Five Java file uploader instances are able to upload approximately five times as
many files to one Surface instance than a single instance. This indicates that the upload
limits of the Surface instance are not reached yet.

Figure 7.2.: Surface performance test 2

Test 3

Purpose. Test how many files one Surface instance can ingest on one machine.
Java file uploader setup change 10 Java file uploader instances
Test time frame. 19:41 – 19:47
Observation time frame. 19:42 – 19:46
Uploads per minute within observation time frame. (visualized in Figure 7.3)

• Total: 3691, 3787, 3742, 3598, 2339

• Average: 3431.4

• Median: 3691

Evaluation. Ten Java file uploader instances are able to upload approximately ten times as
many files to one Surface instance than a single instance. This indicates that the upload
limits of the Surface instance are not reached yet.
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Figure 7.3.: Surface performance test 3

Test 4

Purpose. Test how many files one Surface instance can ingest on one machine.
Java file uploader setup change 15 Java file uploader instances
Test time frame. 14:26 – 14:32
Observation time frame. 14:27 – 14:31
Uploads per minute within observation time frame. (visualized in Figure 7.4)

• Total: 5612, 5579, 5686, 5251, 5106

• Average: 5446.8

• Median: 5579

Evaluation. 15 Java file uploader instances are able to upload approximately 15 times as
many files to one Surface instance than a single instance. This indicates that the upload
limits of the Surface instance are not reached yet.

Test 5

Purpose. Test how many files one Surface instance can ingest on one machine.
Java file uploader setup change 20 Java file uploader instances
Test time frame. 19:49 – 19:55
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Figure 7.4.: Surface performance test 4

Observation time frame. 19:50 – 19:54
Uploads per minute within observation time frame. (visualized in Figure 7.5)

• Total: 7022, 7297, 7199, 7109, 7228

• Average: 7171

• Median: 7199

Evaluation. 20 Java file uploader instances are able to upload approximately 20 times as
many files to one Surface instance than a single instance. This indicates that the upload
limits of the Surface instance are not reached yet.

Test 6

Purpose. Test how many files one Surface instance can ingest on one machine.
Java file uploader setup change 30 Java file uploader instances
Test time frame. 15:02 – 15:08
Observation time frame. 15:03 – 15:07
Uploads per minute within observation time frame. (visualized in Figure 7.6)

• Total: 8988, 8983, 8952, 8987, 8955

• Average: 8973
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Figure 7.5.: Surface performance test 5

• Median: 8983

Evaluation. 30 Java file uploader instances are not able to upload approximately 30 times as
many files to one Surface instance than a single instance. This indicates that the upload
limits of the Surface instance reached.

Figure 7.6.: Surface performance test 6

Test 7

Purpose. Verify that the upload limits are reached.
Java file uploader setup change 40 Java file uploader instances
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Test time frame. 15:13 – 15:19
Observation time frame. 15:14 – 15:18
Uploads per minute within observation time frame. (visualized in Figure 7.7)

• Total: 8977, 8985, 9008, 8993, 8994

• Average: 8991.4

• Median: 8993

Evaluation. The current setup with 40 Java file uploader did not lead to a signification
upload rate increase. This verifies that the limits are reached.

Figure 7.7.: Surface performance test 7

Test 8

Purpose. Test if two Surface instances can ingest more files than one.
Surface instances change 2 Surface instances
Test time frame. 15:28 – 15:34
Observation time frame. 15:29 – 15:33
Uploads per minute within observation time frame. (visualized in Figure 7.8)

• Total: 8589, 8970, 9026, 9042, 9042

• Average: 8933.8
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• Median: 9026

Evaluation. Two Surface instances can not accept more uploads than one Surface on the
used machine. This indicates that the machine or network limits are reached.

Figure 7.8.: Surface performance test 8

Conclusion. Figure 7.9 shows the average numbers of uploads per minute for the different
test setups. There is a linear increase in uploads per minute up to 20 Java file uploader
instances. From 20 to 30 Java file uploader instances the increase is less than linear and
with 30, the maximum number of uploads is reached. Increasing the number of Java file
uploader or Surface instances did not increase the number further. This indicates that with
the current AWS machine setup utilized to run the Surface and Java file uploader instances,
the maximum is about 9000 uploads per minute.

7.1.2. File indexing (Circulator)

The second part of the data ingestion performance evaluation is to test the amount of files
that can be processed by one or more Circulator instances on one machine. Because the file
upload test was conducted before this one, the Amazon SQS job queue contains a large
amount of data ingestion jobs ready to be processed. The initial setup for this test looks as
follows.

Big KG-OLAP lakehouse:

• Deployment according to appendix B.2 and section 6
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Figure 7.9.: Surface performance test overview

• One Amazon EKS cluster node m5.4xlarge: 16 vCPU, 64GiB memory, Up to 10 Gigabit
(Amazon Linux 2 x86_64 OS)

• 0 Surface instances

• 0 Bed instances

• 1 Circulator instance

• 1 Angular web UI instance

Test 1

Purpose. Test the limits of one Circulator instance on the machine.
Test time frame. 17:14 – 17:20
Observation time frame. 17:15 – 17:19
Uploads per minute within observation time frame. (visualized in Figure 7.10)

• Total: 2217, 2310, 2279, 2266, 2269

• Average: 2268.2
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• Median: 2269

Evaluation. One Circulator instance can process a steady amount of about 2268 files per
minute on the single node.

Figure 7.10.: Circulator performance test 1

Test 2

Purpose. Test how one Circulator instance performs over a longer test time.
Test time frame. 21:56 – 22:08
Observation time frame. 21:57 – 22:07
Uploads per minute within observation time frame. (visualized in Figure 7.11)

• Total: 2373, 2165, 2233, 2114, 2113, 2250, 2039, 2161, 2122, 2195, 2282

• Average: 2186.1

• Median: 2165

Evaluation. The indexing rate did not change significantly over a longer test period in
comparison to the first test.
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Figure 7.11.: Circulator performance test 2

Test 3

Purpose. Test if two Circulator instances are can process more files on a single machine
than one.
Circulator instances change 2 Circulator instances
Test time frame. 17:22 – 17:28
Observation time frame. 17:23 – 17:27
Uploads per minute within observation time frame. (visualized in Figure 7.12)

• Total: 2363, 2398, 3289, 3643, 2260

• Average: 2790.6

• Median: 2398

Evaluation. The indexing rates per minute varies a lot. One suspicious phenomenon
observed in the log was that a lot of write requests to the Amazon Keyspaces database
failed. The data used to measure the performance is based on data stored in the Cassandra
database. Hence, it is likely that the spikes in performance are caused by the Amazon
Keyspaces service. The next test checks if a longer test period leads to an increased average
indexing time per minute.
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Figure 7.12.: Circulator performance test 3

Test 4

Purpose. Test how two Circulator instances perform over a longer test time.
Test time frame. 18:11 – 18:23
Observation time frame. 18:12 – 18:22
Uploads per minute within observation time frame. (visualized in Figure 7.13)

• Total: 3733, 3862, 4204, 2514, 2371, 2375, 2384, 2378, 2383, 2390, 2374

• Average: 2815.3

• Median: 2384

Evaluation. The ingestion rate per minute did not change significantly with a longer
test time. However, the low variance from 18:15 – 18:22 is remarkable. This could not
be observed in further tests. It is likely that the Amazon Keyspaces service stabilized its
maximum throughput at this time and did not scale up or down.

Test 5

Purpose. Test if three Circulator instances are can process more files on a single machine
than two.
Circulator instances change 3 Circulator instances
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Figure 7.13.: Circulator performance test 4

Test time frame. 18:03 – 18:09
Observation time frame. 18:04 – 18:08
Uploads per minute within observation time frame. (visualized in Figure 7.14)

• Total: 2330, 2311, 2315, 2375, 2971

• Average: 2460.4

• Median: 2330

Evaluation. With three Circulator instances, the average ingestion rate decreased slightly.
The reason could be that more load on Amazon Keyspaces led to an increased amount of
failed database writes.

Test 6

Purpose. Test how three Circulator instances perform over a longer test time.
Test time frame. 18:32 – 18:44
Observation time frame. 18:33 – 18:43
Uploads per minute within observation time frame. (visualized in Figure 7.15)

• Total: 2372, 2378, 2374, 2374, 2488, 2989, 3523, 4219, 4753, 4561, 3375

• Average: 3218.73
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Figure 7.14.: Circulator performance test 5

• Median: 2989

Evaluation. The average number of indexed files per minute increased with a test runtime
of 11 minutes over 5 minutes. Together with the fact that the numbers increase throughout
the test period, it is most likely that Amazon Keyspaces, which scales automatically, is the
bottleneck in the current setup.

Figure 7.15.: Circulator performance test 6
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Test 7

Purpose. Test if four Circulator instances are can process more files on a single machine
than three.
Circulator instances change 4 Circulator instances
Test time frame. 18:47 – 18:53
Observation time frame. 18:48 – 18:52
Uploads per minute within observation time frame. (visualized in Figure 7.16)

• Total: 2375, 2363, 2376, 2365, 2718

• Average: 2439.4

• Median: 2375

Evaluation. With four Circulator instances, the average ingestion rate did not increase
significantly. The numbers are lower than three Circulator instances process over an
extended test time. This is most likely caused by the Amazon Keyspaces write limits at this
time.

Figure 7.16.: Circulator performance test 7

Test 8

Purpose. Test how four Circulator instances perform over a longer test time.
Test time frame. 21:13 – 21:25
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Observation time frame. 21:14 – 21:24
Uploads per minute within observation time frame. (visualized in Figure 7.17)

• Total: 2397, 3405, 5147, 3813, 4257, 4756, 4445, 4128, 4989, 5031, 5868

• Average: 4385.1

• Median: 4445

Evaluation. The average number of indexed files per minute increased with a test runtime
of 11 minutes over 5 minutes. As already observed in test 6, the numbers increase over
time in this test as well. This is caused by the automatic scaling mechanism of Amazon
Keyspaces, which is clearly the limiting factor at this time.

Figure 7.17.: Circulator performance test 8

Test 9

Purpose. Find the maximum number of Circulator instances that can run in parallel and
index more files per minute than fewer instances.
Circulator instances change 5 Circulator instances
Test time frame. 18:59 - 19:05
Observation time frame. 19:00 – 19:04
Uploads per minute within observation time frame. (visualized in Figure 7.18)

• Total: 4511, 2515, 7583, 5423, 5326
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• Average: 5071.6

• Median: 5326

Evaluation. The average number of indexed files per minute is higher with five Circulator
instances compared to four instances. This indicates that the maximum number of possible
running Circulator instances per machine is not reached. However, a large amount of
write requests to the Amazon Keyspaces database fail and the scaling mechanism of Amazon
Keyspaces in the background is opaque. Hence, it is impossible to test the limits of the
Circulator service with the Amazon Keyspaces service being a bottleneck underneath.

Figure 7.18.: Circulator performance test 9

Test 10

Purpose. Test how five Circulator instances perform over a longer test time.
Test time frame. 19:10 – 19:22
Observation time frame. 19:11 – 19:21
Uploads per minute within observation time frame. (visualized in Figure 7.19)

• Total: 5962, 3604, 6596, 7619, 3953, 5953, 6719, 4849, 6269, 6308, 11972

• Average: 6345.82

• Median: 6269
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Evaluation. The average number of indexed files per minute increased with a test runtime
of 11 minutes over 5 minutes. This indicates that Amazon Keyspaces scaled automatically
in the background. The high variance between the minutes indicates a huge number of
failed insertions, comparing the maximum ( 12000) to the minimum ( 3600).

Figure 7.19.: Circulator performance test 10

Conclusion. Figure 7.20 shows the average numbers of files indexed per minute for
the different test setups. One Circulator instance is able to process about 2000 files per
minute on the utilized machine. The graph clearly shows that more Circulator instances
can get more ingestions done. However, the clear bottleneck in the current prototype
implementation is the Amazon Keyspaces managed Cassandra database service. With
more than one Circulator instances, write requests start to fail hence files are processed
multiple times until the requests succeed. With longer testing times, the automatic scaling
mechanism of Amazon Keyspaces shows its effect. Because of that, the average file indexing
numbers are higher with increased observation time. This phenomenon starts at three
Circulator instances which is likely caused that the higher number of failed requests lead
to increased database scaling. Due to the Amazon Keyspaces bottleneck, it is not possible
to reveal the real limits of how many files can be indexed on the current Big KG-OLAP
lakehouse setup.

Data ingestion performance evaluation conclusion. Unfortunately, the performance
evaluation does not result in a single number stating how many files can be ingested per
minute due to underlying constraints and opaque scaling mechanisms. However, with
two m5.4xlarge nodes on the Amazon EKS cluster, one running a Surface instance and the
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Figure 7.20.: Circulator performance test overview

other one operating five Circulator instances, a throughput between 6000 and 9000 files per
minute can be achieved once the Amazon Keyspaces services scaled itself up. The lower limit
of 6000 is caused by the Circulator while the maximum number of 9000 is the upload limit
of the Surface. Because both services can be scaled horizontally over multiple machines,
there is no theoretical throughput limit provided that Amazon S3 and the Amazon Keyspaces
services scale as well. For example, with a third node running another Surface instance, the
limiting factor of the data ingestion would be solely the Amazon Keyspaces service. In further
tests, Amazon Keyspaces can be replaced with a bigger Apache Cassandra deployment to
remove this bottleneck.

7.2. Contextual operations

The performance evaluation of the contextual operations is done with an automated script.
The Java context operation performance test application runs configured contextual operations
five times without cache and five times with cache and calculates the average response
times for both scenarios before changing the setup. The test setup use 1, 2, 4 and 8 Bed
instances to test the horizontal scalability of the RDF cube construction. The test setup
looks as follows.
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Big KG-OLAP lakehouse:

• Deployment according to appendix B.2 and section 6

• One Amazon EKS cluster node m5.4xlarge: 16 vCPU, 64GiB memory, Up to 10 Gigabit
(Amazon Linux 2 x86_64 OS)

• 1 Surface instance

• 1 / 2 / 4 / 8 Bed instances

• 0 Circulator instances

• 0 Angular web UI instances

• 0 Angular web UI instances

• Total contexts stored: 9,224

• Total files stored: 7,169,243

• Total indices (files to context relations): 7,169,243

• Total Object storage size in MiB: 38,222

The Context operations used to evaluate the performance are shown in listing 7.1. They
include four Slice’n’Dice operations as well as the same four operations but with a Merge
clause. Each of the four different Slice’n’Dice operation targets a number of contexts on a
different order of magnitude. This also implies that the number of resulting quads and
size in bytes increases on the same order. Q1/Q5 target 2 contexts and results in 2209 quads
or 0.6 MiB. Q2/Q6 select 12 contexts and return 17,604 quads in 5 MiB. Q3/Q7 extract 96
contexts which contain 152,832 quads and a total size of 43 MiB. The most complex queries
are Q4/Q8 which include 720 contexts and 1,085,595 quads in 319 MiB.

Listing 7.1: Context operations used for performance evaluation

1 Q1: SELECT time_day=2019-01-01 AND location_location=LOWS AND topic_feature

=AircraftStand

2 Q2: SELECT time_day=2019-01-01 AND location_fir=LOVV AND topic_category=

Routes

3 Q3: SELECT time_month=2018-02 AND location_territory=France AND

topic_family=EnRoute
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4 Q4: SELECT time_month=2018-02 AND location_territory=France

5 Q5: SELECT time_day=2019-01-01 AND location_location=LOWS AND topic_feature

=AircraftStand ROLLUP ON topic_all, location_all, time_all

6 Q6: SELECT time_day=2019-01-01 AND location_fir=LOVV AND topic_category=

Routes ROLLUP ON topic_all, location_all, time_all

7 Q7: SELECT time_month=2018-02 AND location_territory=France AND

topic_family=EnRoute ROLLUP ON topic_all, location_all, time_all

8 Q8: SELECT time_month=2018-02 AND location_territory=France ROLLUP ON

topic_all, location_all, time_all

The tests were conducted on a single machine. The Surface service as well as the Bed
instances (1, 2, 4 or 8) ran on the same host. Every query was run 5 times (with cache and
without cache) and the charts in Figures 7.21, 7.22, 7.23 and 7.24 show the average runtime
of these 5 test runs.

In general, the charts clearly show that the larger the query gets in terms of considered
contexts, the longer it takes to process them. However, there are significant runtime
differences for large queries depending on the test setups.

The tests conducted without cached contexts show that 4 Bed instances clearly performed
best, with less than a linear increase of runtime. On the opposite, the runtimes for tests
with a single Bed instance increased far more than linearly. Tests conduced with 2 and 8
Bed instances are located somewhere in the middle on an almost linear scale, but rather
close to the performance of 4 Bed instances.

Interestingly, in case of cached contexts, the previously observed conclusions are not true
anymore. In both tests, Slice’n’Dice and Merge, the runtimes for the queries increased with
the number of Bed instances. Especially for the largest queries Q4 and Q8, the difference is
relatively significant because it almost doubled.

Scaling Bed instances is necessary to answer large queries (> 100 contexts) fast because
file mapping into RDF is parallelized. For cached contexts, scaling merely leads to an
increase in runtime, which is remarkable in relative numbers but less significant in absolute
numbers. This indicates that simply for transferring data from the cache via Bed instances
to the surface service, no scaling is necessary for this amount of load. Further tests are
necessary to show the performance for queries with more than a thousand contexts and
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also how runtimes behave if load is spread across multiple hosts but not parallelized on a
single machine.

Figure 7.21.: Slice’n’Dice queries Q1-Q4 performance test overview without graph caching
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Figure 7.22.: Slice’n’Dice queries Q1-Q4 performance test overview with graph caching

Figure 7.23.: Merge queries Q5-Q8 performance test overview without graph caching
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Figure 7.24.: Merge queries Q5-Q8 performance test overview with graph caching
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8. Conclusion

The goal of this thesis was to identify big data requirements for KG-OLAP and develop an
architecture that fulfills those requirements as well as KG-OLAP functionalities. In addi-
tion to that, a system is implemented that can be operated on modern cloud environments
to lay the foundation for future research efforts in this direction. The resulting architecture
and implementation is a cloud-native data lakehouse tailored to meet KG-OLAP require-
ments. As opposed to a central graph database, the Big KG-OLAP lakehouse is distributed
and scalable by design. A key prerequisite to avoid a too large physical graph is the Engine
concept which allows to index data on ingestion and construct the graph on-demand. This
design enables scalable data ingestion and contextual operations.

The thesis gives a theoretical background on KG-OLAP and relevant concepts before Big
KG-OLAP requirements are defined. Based on the defined requirements, the general
architecture is proposed which forms the first contribution of the thesis. It is technology
independent and lays the foundation for the following and future implementations. The
second contribution is the concrete prototype implementation. Built on state-of-the-
art technologies and AWS, the presented prototype demonstrates the feasibility of the
architecture and its applicability for pilot briefings in ATM. A performance evaluation of
the prototype’s main functionalities data ingestion and contextual operations as the third
contribution verified its scalability and rounds up the thesis.

Concluding, this thesis set a first step into the direction of Big KG-OLAP. Future work
should focus on additional and more rigorous performance evaluations to reveal hori-
zontal scalability limits of the system, especially due to the bottleneck experienced with
AWS Keyspaces. Such tests will be the basis for further improvements of the reference
architecture and prototype implementation.
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A. KGOQL Grammar

To perform contextual operations on the Big KG-OLAP lakehouse, a custom query lan-
guage called KG-OLAP query language or KGOQL was defined. The section explains
the KGOQL grammar and shows examples. Figure A.1 illustrates the KGOQL gram-
mar definition and shows the possibilities. A KGOQL query must contain at least one
Slice’n’Dice expression (sdExpr) while the Merge expression (mergeExpr) is optional. Mul-
tiple Slice’n’Dice expressions are connected with the AND keyword. In general, it is
mandatory to put a space between a keywords such as SELECT or AND or expressions.
Merge expressions are separated by a comma. Also, the grammar is not case sensitive.

Figure A.1.: KGOQL grammar

Figure A.2 shows the grammar of a Slice’n’Dice expression. A * (asterisk) as sdExpr queries
the entire cube and no more sdExpr can be concatenated with the AND keyword. The other
possibility is to specify one or more Members to slice/dice at a certain cube coordinate. A
Member consists of the complete identifier of a Level and a value. The complete identifier
of a Level is the combination of the Dimension and the Level identifier separated by an
underscore. Values must be specified in the correct format defined by the associated Level.
Only one Member per dimension is allowed.

The Merge expression (mergeExpr) grammar is described in A.3. A mergeExpr is a complete
identifier of a Level to which the query rolls up to. As described above, the complete
identifier of a Level is the combination of the Dimension and the Level identifier separated
by an underscore. It is also possible to use the ALL level in the mergeExpr to merge all
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Figure A.2.: Slice’n’Dice expression

hierarchies of the respective dimension. Same as for the sdExpr, only one Member per
dimension is allowed.

Figure A.3.: Merge expression

Listing A.1 contains four valid KGOQL queries that show the versatility of the query
language. Those queries were used to test the Big KG-OLAP lakehouse prototype and
demonstrate its applicability for the ATM pilot briefings use case. The available dimen-
sions are TIME, LOCATION and TOPIC. The levels of the TIME dimensions are YEAR,
MONTH and DAY. The LOCATION is split in the granularities TERRITORY, Flight infor-
mation region (FIR) and LOCATION. A TOPIC can be drilled down from CATEGORY over
FAMILY to TOPIC. As stated above, the Levels define the data formats for the given values
such as yyyy-MM-dd for TIME_DAY.

Listing A.1: KGOQL query examples

1 SELECT * ROLLUP ON topic_all, location_all, time_all

2 SELECT time_month=2021-05 AND location_location=LOWS

3 SELECT time_year=2021 AND location_fir=EDMM AND topic_family=

FlightRestrictions ROLLUP ON time_all, location_fir

4 SELECT time_day=2021-12-01 AND location_territory=Germany ROLLUP ON

location_fir, topic_all
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B. Installation

This appendix section includes installation documentation. It describes the structure
of the GitHub repository1 and the required steps to build and run the Big KG-OLAP
lakehouse. In addition to that, the Kubernetes configuration for the deployment on AWS
is included.

B.1. Repository structure, build and run

The Big KG-OLAP lakehouse project is hosted on GitHub2 and uses Gradle for build, deploy
and dependency management. The root level project is structured into the following sub-
projects.

• surface : Frontend service that provides the public REST API and other functionalities

• bed : Backend service that is used internally to perform context operations

• circulator : Background processor that performs asynchronous jobs such as process-
ing newly added files

• svc-shared : Shared code between surface, bed and circulator

• shared-api : API code that is used by every other module

• aixm-engine : Engine implementation for ‘NOTAM‘ data

• iwxxm-engine : Engine implementation for ‘METAR‘ data (not implemented yet)

• web-ui : Angular UI to query/ingest data

1https://github.com/davidHaunschmied/big-kgolap-lakehouse
2https://github.com/
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• file-uploader : Script to fetch data from S3 and upload them to the surface REST
endpoint

• query-perf-test : Script to make a complete contextual operations test run (handles
scaling and restarts as well via "kubectl")

Prerequisites for local development.

• JDK 11 or newer on JAVA_HOME environment variable

• npm version 12 or later for Angular UI build and development

• Apache Cassandra instance (Port needs to be configured, default is 9042)

Sample docker command: docker run -d -p 9042:9042 cassandra

• Redis instance (Port needs to be configured, default is ‘6379‘)

docker run –name redis-cache -d -p 6379:6379 redis

Configuration. To adjust the Big KG-OLAP lakehouse to your local environment, change
variables such as the Apache Cassandra or Redis port accordingly in svc-shared/src/main/
resources/application-base.properties. Most likely, the only parameter that needs to be ad-
justed is lakehouse.storage-dir. It defines the directory in which the files are stored.

Setup.

1. Run gradlew build in the root folder (Cassandra on port 9142 required for persistence
tests, use Gradle option -x test to skip tests)

2. Run npm install in /web-ui

Run.

1. Run SurfaceApplication.java and go to http://localhost:8080/swagger-ui/index.html to see
the REST API

2. Run BedApplication.java

3. Run CirculatorApplication.java

4. Run web-ui by executing npm start in /web-ui and go to http://localhost:4200
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Deploy.

1. Make sure docker executable is on PATH and docker server is running

2. Run gradle buildDockerImage

3. Run services

Surface: docker run -p 8080:8080 jku-dke/big-kgolap-lakehouse/surface:latest

Bed: docker run -p 9091:9091 jku-dke/big-kgolap-lakehouse/bed:latest

Circulator: docker run jku-dke/big-kgolap-lakehouse/circulator:latest

Pushing the docker images to Amazon ECR.

1. Make sure aws executable is on PATH

2. Log in with aws ecr get-login-password –region us-east-2 | docker login –username AWS
–password-stdin <acc>.dkr.ecr.us-east-2.amazonaws.com

3. Run gradle pushDockerImage

B.2. Amazon EKS deployment configuration

This deployment configuration was used to deploy the three Spring services Surface, Bed
and Circulator as well as the Angular web UI on an Amazon EKS cluster. The first resource
creates is the big-kgolap-lakehouse namespace in which the following ones are logically
included. The four deployments (three services plus web ui) follow a similar configuration.
Basically, there is one replica (= one pod) per deployment. Further scaling is subject to the
respective performance tests. The container images are stored on Amazon ECR (Elastic
Container Registry) and pulled on every restart. This policy ensures that the latest version
is running. The environment variable SPRING_PROFILES_ACTIVE=aws must be set on
every Spring service to choose the correct Spring configuration. The aws configuration
includes the correct endpoints to the required AWS services such as the Amazon SQS
job queue, Amazon S3 object storage or the Amazon Keyspaces Cassandra database. The
containerPorts specified in the deployment configuration define the port on which the
pods are accessible. A Kubernetes Service in front of the pods enables service discovery.
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Every deployment is associated to a service expect the Circulator as it does not provide
any interface but rather performs background processing tasks. For the two external
accessible deployments Surface and Web UI, the service type NodePort is used. This allows
to access the corresponding pods from outside the cluster. An internet-facing Ingress
configured as ALB (Application Load Balancer) generates an external DNS name on top
of the NodePort and provides ISO-OSI application layer load balancing. TheBed service
must not be accessible from the outside hence ClusterIP is used as service type. The load
balancing between Bed instances requires a service mesh such as Linkerd to be installed and
that the client accesses the Bed via the service name rather than a pod IP. The environment
variable BED_HOST=big-kgolap-lakehouse-bed-svc ensures that the Surface uses the service
name (line 52). One pitfall that is worth to mention is that an ALB Ingress has a default
idle timeout of one minute at the time of writing. This results in aborted requests for
contextual operations that take longer than one minute of processing. This can be solved by
configuring an increased idle timeout (line 182).

Listing B.1: Amazon EKS Big KG-OLAP lakehouse deployment configuration

1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 name: big−kgolap−lakehouse
5---
6 apiVersion: apps/v1
7 kind: Deployment
8 metadata:
9 name: big−kgolap−lakehouse−web−ui

10 namespace: big−kgolap−lakehouse
11 labels:
12 app: big−kgolap−lakehouse−web−ui
13 spec:
14 replicas: 1
15 selector:
16 matchLabels:
17 app: big−kgolap−lakehouse−web−ui
18 template:
19 metadata:
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20 labels:
21 app: big−kgolap−lakehouse−web−ui
22 spec:
23 containers:
24 - name: web−ui
25 image: acc.dkr.ecr.us−east−2.amazonaws.com/big−kgolap−lakehouse/web−

ui:0.2
26 imagePullPolicy: Always
27---
28 apiVersion: apps/v1
29 kind: Deployment
30 metadata:
31 name: big−kgolap−lakehouse−surface
32 namespace: big−kgolap−lakehouse
33 labels:
34 app: big−kgolap−lakehouse−surface
35 spec:
36 replicas: 1
37 selector:
38 matchLabels:
39 app: big−kgolap−lakehouse−surface
40 template:
41 metadata:
42 labels:
43 app: big−kgolap−lakehouse−surface
44 spec:
45 containers:
46 - name: surface
47 image: acc.dkr.ecr.us−east−2.amazonaws.com/big−kgolap−lakehouse/

surface:0.2
48 imagePullPolicy: Always
49 env:
50 - name: SPRING_PROFILES_ACTIVE
51 value: "aws"
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52 - name: BED_HOST
53 value: "big-kgolap-lakehouse-bed-svc"
54 ports:
55 - containerPort: 8080
56---
57 apiVersion: apps/v1
58 kind: Deployment
59 metadata:
60 name: big−kgolap−lakehouse−bed
61 namespace: big−kgolap−lakehouse
62 labels:
63 app: big−kgolap−lakehouse−bed
64 spec:
65 replicas: 1
66 selector:
67 matchLabels:
68 app: big−kgolap−lakehouse−bed
69 template:
70 metadata:
71 labels:
72 app: big−kgolap−lakehouse−bed
73 spec:
74 containers:
75 - name: bed
76 image: acc.dkr.ecr.us−east−2.amazonaws.com/big−kgolap−lakehouse/bed

:0.2
77 imagePullPolicy: Always
78 env:
79 - name: SPRING_PROFILES_ACTIVE
80 value: "aws"
81 - name: BED_HOST
82 value: "big-kgolap-lakehouse-bed-svc"
83 ports:
84 - containerPort: 9091
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85---
86 apiVersion: apps/v1
87 kind: Deployment
88 metadata:
89 name: big−kgolap−lakehouse−circulator
90 namespace: big−kgolap−lakehouse
91 labels:
92 app: big−kgolap−lakehouse−circulator
93 spec:
94 replicas: 1
95 selector:
96 matchLabels:
97 app: big−kgolap−lakehouse−circulator
98 template:
99 metadata:

100 labels:
101 app: big−kgolap−lakehouse−circulator
102 spec:
103 containers:
104 - name: circulator
105 image: acc.dkr.ecr.us−east−2.amazonaws.com/big−kgolap−lakehouse/

circulator:0.2
106 imagePullPolicy: Always
107 env:
108 - name: SPRING_PROFILES_ACTIVE
109 value: "aws"
110---
111 apiVersion: v1
112 kind: Service
113 metadata:
114 name: big−kgolap−lakehouse−web−ui−svc
115 namespace: big−kgolap−lakehouse
116 spec:
117 selector:
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118 app: big−kgolap−lakehouse−web−ui
119 ports:
120 - protocol: TCP
121 port: 80
122 targetPort: 80
123 type: NodePort
124---
125 apiVersion: v1
126 kind: Service
127 metadata:
128 name: big−kgolap−lakehouse−surface−svc
129 namespace: big−kgolap−lakehouse
130 spec:
131 selector:
132 app: big−kgolap−lakehouse−surface
133 ports:
134 - protocol: TCP
135 port: 8080
136 targetPort: 8080
137 type: NodePort
138---
139 apiVersion: v1
140 kind: Service
141 metadata:
142 name: big−kgolap−lakehouse−bed−svc
143 namespace: big−kgolap−lakehouse
144 spec:
145 selector:
146 app: big−kgolap−lakehouse−bed
147 ports:
148 - protocol: TCP
149 port: 9091
150 targetPort: 9091
151 type: ClusterIP
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152---
153 apiVersion: networking.k8s.io/v1
154 kind: Ingress
155 metadata:
156 namespace: big−kgolap−lakehouse
157 name: big−kgolap−lakehouse−web−ui−svc−ingress
158 annotations:
159 alb.ingress.kubernetes.io/scheme: internet−facing
160 alb.ingress.kubernetes.io/target−type: ip
161 spec:
162 ingressClassName: alb
163 rules:
164 - http:
165 paths:
166 - path: /
167 pathType: Prefix
168 backend:
169 service:
170 name: big−kgolap−lakehouse−web−ui−svc
171 port:
172 number: 80
173---
174 apiVersion: networking.k8s.io/v1
175 kind: Ingress
176 metadata:
177 namespace: big−kgolap−lakehouse
178 name: big−kgolap−lakehouse−surface−svc−ingress
179 annotations:
180 alb.ingress.kubernetes.io/scheme: internet−facing
181 alb.ingress.kubernetes.io/target−type: ip
182 alb.ingress.kubernetes.io/load−balancer−attributes: idle_timeout.timeout_seconds

=600
183 spec:
184 ingressClassName: alb
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185 rules:
186 - http:
187 paths:
188 - path: /
189 pathType: Prefix
190 backend:
191 service:
192 name: big−kgolap−lakehouse−surface−svc
193 port:
194 number: 8080
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