

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Author

Victoria Ines Kaar, BSc.

Submission

Institute of Business

Informatics – Data &

Knowledge Engineering

Thesis Supervisor

Mag. Dr. Christoph

Schütz

Co-Supervisor

Mag. Dr. Bernd Neumayr

September 2021

MAPPING AIXM

SCHEMA AND

INSTANCE DATA TO

RDF(S)

Master’s Thesis

to confer the academic degree of

Master of Science

in the Master’s Program

Business Informatics

2

SWORN DECLARATION

I hereby declare under oath that the submitted Master’s Thesis has been written solely by me

without any third-party assistance, information other than provided sources or aids have not been

used and those used have been fully documented. Sources for literal, paraphrased and cited

quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Place, Date

Signature

3

Abstract

Air traffic in Europe is currently increasing and with it the workload of the air traffic control

operators. Furthermore, the number of aircraft and flights in air traffic for a given sector is

constrained by the available resources of the air traffic control operators, which means that the

workload of the air traffic control operators grows when air traffic is increasing. Air traffic control

operators can lose situational awareness if a certain level of air traffic is exceeded. This, in turn,

leads to unsafe decisions. In order to prevent the aforementioned risks, a situationally aware

system is needed. Therefore, the collaborative research project AISA investigates the use of

artificial intelligence in air traffic management; this master’s thesis started as a preliminary study

for the AISA project. The AISA project aims to build a situationally aware system to support air

traffic control operators in their work. The input that is needed for this situationally aware system

are the messages that are exchanged within air traffic management using the Aeronautical

Information Exchange Model (AIXM), among other exchange models. In order to enable logical

reasoning within a situationally aware system, it is beneficial to map AIXM input to RDF(S), which

is a foundational technology for the Semantic Web and symbolic artificial intelligence.

The goal of this thesis is the development of a transformation procedure for the mapping of the

AIXM schema to RDFS as well as the development of mapping rules to transform AIXM instance

data into RDF statements. These procedures serve as a guideline for performing the mapping

from AIXM to RDF(S). Additionally, the thesis also explains the automation process of these

procedures that are introduced within this thesis. Therefore, the contribution of this thesis is not

only the mapping procedures but also tools that automate those procedures and a description of

the adaptions that are necessary to these tools to transform other exchange models in air traffic

management in the future.

4

Kurzfassung

Der Luftverkehr in Europa nimmt derzeit zu und somit auch die Arbeitsbelastung der

Luftverkehrskontrolle. Darüber hinaus wird die Anzahl der Flugzeuge und Flüge im Luftverkehr für

einen bestimmten Sektor durch die verfügbaren Ressourcen der Luftverkehrskontrolle begrenzt,

was bedeutet, dass die Arbeitsbelastung der Luftverkehrskontrolle mit dem steigenden

Flugverkehr zunimmt. Bei Überschreitung eines bestimmten Verkehrsaufkommens kann die

Luftverkehrskontrolle das Situationsbewusstsein verlieren. Dies wiederrum führt zu unsicheren

Entscheidungen. Um die genannten Risiken zu vermeiden, wird ein situationsbewusstes System

benötigt. Das Verbundforschungsprojekt AISA untersucht daher den Einsatz von künstlicher

Intelligenz im Luftverkehrsmanagement; diese Masterarbeit ist als Vorstudie für das AISA-Projekt

entstanden. Ziel des AISA-Projekts ist es, ein situationsbewusstes System zu entwickeln, dass

die Luftverkehrskontrolle bei ihrer Arbeit unterstütz. Der Input, welcher für dieses

situationsbewusste System benötigt wird, sind die Nachrichten, die innerhalb des

Flugverkehrsmanagements unter Verwendung des Aeronautical Information Exchange Model

(AIXM) und anderer Austauschmodelle ausgetauscht werden. Um logische Schlussfolgerungen

innerhalb eines situationsbewussten Systems zu ermöglichen, ist es von Vorteil, den AIXM-Input

auf RDF(S) abzubilden, einer grundlegenden Technologie für das Semantic Web und symbolische

künstliche Intelligenz.

Ziel dieser Arbeit ist die Entwicklung eines Transformationsverfahrens für die Abbildung des

AIXM-Schemas auf RDFS sowie die Entwicklung von Mapping-Regeln zur Transformation von

AIXM-Instanzdaten in RDF-Anweisungen. Diese Verfahren dienen als Leitfaden für die

Durchführung des Mappings von AIXM auf RDF(S). Darüber hinaus wird in dieser Arbeit auch der

Automatisierungsprozess dieser Verfahren, die in dieser Arbeit vorgestellt werden, erläutert.

Daher besteht der Beitrag dieser Masterarbeit nicht nur in den Transformationsverfahren, sondern

auch in den Werkzeugen, welche diese Prozeduren automatisieren, sowie in der Beschreibung

der Anpassungen, welche an diesen Werkzeugen notwendig sind, um andere Austauschmodelle

im Luftverkehrsmanagement in Zukunft zu transformieren.

5

Table of Contents

Nomenclature .. 6

1 Introduction ... 7

1.1 Problem Statement .. 7

1.2 Contribution ... 8

1.3 Outline ... 8

2 State of the Art .. 9

2.1 AIXM ... 9

2.2 UML .. 12

2.3 RDF ... 16

2.4 RDF Mapping Language ... 22

2.5 XML and XQuery ... 27

3 Schema Mapping .. 29

3.1 Rules ... 29

3.2 Transformation Procedure ... 31

4 Instance Data Mapping ... 38

4.1 Mapping Rules .. 38

4.2 Defining the Mapping Rules ... 40

4.3 Transforming AXIM XML Instance Data to RDF Using RMLMapper 45

5 Automating the Mapping Procedures .. 49

5.1 Schema Mapping .. 49

5.2 Instance Data Mapping .. 57

6 Conclusion .. 64

7 List of Figures ... 65

8 List of Tables .. 68

9 Bibliography .. 69

6

Nomenclature

AI Artificial intelligence

AIS Aeronautical Information Service

AIXM Aeronautical Information Exchange Model

ATC Air Traffic Control

ATCO Air Traffic Controller

ATM Air Traffic Management

ICAO International Civil Aviation Organization

IFR Instrument Flight Rules

MOF Meta Object Facility

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RML RDF Mapping Language

UML Unified Modelling Language

XML Extensible Markup Language

7

1 Introduction

The objective of this master thesis is the mapping of the AIXM 5.1.1 UML diagrams to RDF

Schema and the mapping of AIXM XML instance data to RDF. This chapter provides an overview

of the thesis in general, describing the problem statement, the contribution of this thesis and its

outline.

1.1 Problem Statement

Air traffic management (ATM) is a necessary service to enable air transport. In ATM, air traffic

control (ATC) ensures that aircraft fly safely in airspace. More specifically, ATM is a navigation

service that coordinates air traffic primarily through air traffic control (ATC), air traffic flow control

(ATFM) and airspace management. For additional information on ATM, the thesis refers to [1] and

[2].

ATC is a main function of ATM, handling flights during all phases, from taxiing, take-off, and

landing to cruising. The services of ATC are provided by licensed air traffic control operators

(ATCOs) to prevent collisions between aircraft in the air and on the ground [2].

The number of aircraft and flights in air traffic for a given sector is constrained by the workload of

the ATCOs. As air traffic in Europe grows, the increasing number of aircraft causes the ATCOs’

workload to rise to a level where they can lose situational awareness [3]. When that awareness is

lost, the controller may make unsafe decisions. To minimize the probability of capacity problems

and, thus, the problem of unsafe decision making, a situationally aware system is needed. The

input for this system are messages that are exchanged within air traffic management in the

Aeronautical Information Exchange Model standard (AIXM) [4][5][6], among other information

exchange models. This master’s thesis started as a preliminary study for the collaborative

research project AISA [7] under the Single European Sky ATM Research Joint Undertaking within

the EU’s research program Horizon 2020. The project AISA investigates the use of artificial

intelligence (AI) in air traffic management. This research project aims to build a situationally aware

system to support the air traffic controllers (ATCOs) in their work. To enable reasoning through

the situationally aware system in order to verify the plausibility of machine learning results, it is

necessary to map AIXM input to RDF(S), which is the topic of this thesis.

The goal of this thesis is to provide a transformation procedure for the mapping of the AIXM

schema to RDF(S) and a procedure for the creation of the mapping rules to map AIXM instance

data to RDF. These procedures are intended to serve as a guideline for performing the mapping

from AIXM to RDF(S). The thesis also introduces tools that help with the mapping of the schema

and the instance data. Although AIXM is used to show the procedures and tools, there is also an

explanation on how to use the procedures and tools in a generic way with other exchange models.

8

1.2 Contribution

The contribution of the master’s thesis is to define and describe (i) how to transform AIXM UML

class diagrams into RDF Schema (RDFS) and (ii) how to transform AIXM XML instance data into

RDF statements.

Regarding the transformation from AIXM UML class diagrams into RDFS (Schema Mapping), this

thesis defines mapping rules, a procedure for applying the mapping rules, and XQuery modules

for automatic transformation of the AIXM UML class diagrams into RDFS. The mapping rules for

this transformation process declare how the individual elements of an UML class diagram should

be represented in RDFS.

Regarding the transformation from AIXM XML to RDF (Instance Data Mapping), this thesis defines

the procedure to transform AIXM XML instance data into RDF triple statements using the tool

RMLMapper [8], the procedure for creating the RML mapping rules that are processed with the

RMLMapper to generate RDF triple statements from XML instance data, and XQuery modules for

semi-automatic creation of the RML mapping rules.

As mentioned above, this thesis formulates two procedures: (i) the procedure for applying the

mapping rules for the schema, and (ii) the procedure for the creation of the mapping rules for the

instance data. The results of those procedures are, in the former case, the complete schema in

RDFS and, in the latter case, the RML mapping rules that can be processed with the RMLMapper,

which creates the RDF statements. The instance data that result from the transformation must

meet the requirement that the mapped RDF statements must be compatible with the generated

RDFS. This means that not only the mapped RDFS must be valid, but also that the mapped

instance data must correspond to the generated RDFS.

Besides providing the procedures, this thesis also shows how to automate those procedures. As

part of this thesis, an XQuery module was implemented to automatically generate the RDFS, using

the AIXM UML class diagram as input. The Apache Jena framework [9] was used to validate the

generated RDFS. Another XQuery module serves to automatically generate the mapping rules

that are needed to generate RDF out of the AIXM instance data. The created RML mapping rules

can be applied using the tool RMLMapper to create valid RDF instance data. Both XQuery

modules are available online1.

All the procedures and implementations were designed and tested using the AIXM schema version

5.1.1 and with the AIXM XML “Donlon” sample data. The presented mappings do not consider the

AIXM Temporality Model [10] and the concept of time slices. This thesis uses UML class diagrams

as input for the mapping because the AIXM schema is modelled using UML class diagrams.

1.3 Outline

The outline of the master’s thesis is the following. The thesis is divided into six main chapters.

Chapter 2 provides an overview of the state of the art. Chapter 3 describes AIXM Schema

Mapping. Chapter 4 describes the AXIM instance mapping. Chapter 5 describes the

implementation and automation of the mapping procedures. Chapter 6 concludes this thesis.

1 https://github.com/jku-win-dke/mt2105-aixm-mapping

https://github.com/jku-win-dke/mt2105-aixm-mapping

9

2 State of the Art

This chapter provides an overview of the state of the art of the technologies and procedures used

within this thesis. It contains explanations of AIXM, UML, RDF, RML and XML and XQuery.

2.1 AIXM

The Aeronautical Information Exchange Model (AIXM) has the goal to provide the aeronautical

information in a digital format. Aviation has an increasing dependency on timely, consistent, and

high-quality aeronautical information. Therefore, an exchange standard is needed and AIXM was

created. AIXM provides a model for aeronautical data which is a standard exchange format that

is used for improving aeronautical information services systems as well as a common language

to express aeronautical information for human and computer interpretation. AIXM also contains

all the necessities for information processing for the aeronautical domain and additionally also

military aeronautical information. For additional information on that topic the thesis refers to [4]

and [5].

The AIXM standard covers data about the following concepts, among others [5]:

• Aerodrome/Heliport

o Information about the airports and heliports.

o Airports and heliports are defined areas either on land or on water and are intended

to be used wholly or in part for the arrival, departure and the surface movement of

aircrafts and helicopters.

o These defined areas also include any buildings, installations, and equipment of the

airport/heliport.

• Navigation Aids

o Navigation aids in the aviation domain can be a navigation aid system, a radar

system, or a special navigation system.

o Navigation aid system provide guidance information of position to efficient and

safely operate the aircrafts.

o Radar services can be for example a Precision Approach Radar for landing an

aircraft or Airport Surveillance Radar that provides short-range radar coverage in

the vicinity of the airports.

• Terminal procedures

o Procedures in the aviation domain are a collection of manoeuvres that are

predetermined and include specified protection from obstacles.

o For example, the “Instrument approach procedure” contains predetermined

procedures that are referenced by flight instruments, which includes protection from

obstacles, while the aircraft approaches the airport/heliport.

• En Route structures

o These data describe the details of the routes to be flown, which is necessary to

provide air traffic services from the end of the take-off and the initial climb phase to

the beginning of the approach and the landing phase.

• Airspace boundaries

o An airspace is defined by a three-dimensional portion (airspace boundaries) of

space that is relevant for air traffic.

10

• Air Traffic Control and NOTAM services

o The services of the Air Traffic Control supervise the airspace itself and the airspace

of airports or heliports.

o NOTAMs are Notices for Airman, which are text messages that are read by pilots,

controllers and other operational personnel involved in flight operations. Digital

NOTAMs are NOTAMs that correspond to the AIXM standard.

• Traffic restrictions

o Contains all the restrictions on a single flight or a traffic flow, for example, a

restriction that flights arriving at JFK can only use Airway A14.

o Which means that those restrictions regulate the use of the route networks.

The AIXM is defined both in terms of XML Schema and UML. For the UML model of AIXM, an XMI

representation is also available (see Section 2.1.2). AIXM instance data are usually exchanged in

XML format. AIXM builds on the Geography Markup Language (GML) [11], which itself was

influenced by the Resource Description Framework (RDF) [12].

The following section illustrates the AIXM standard using an excerpt of the AIXM schema as an

example in order to show what kind of information is represented using AIXM. The example is the

class AirportHeliport with three associations (see Figure 1).

The AirportHeliport class describes information related to airports and heliports, for example

[6]:

• If the airport or heliport is abandoned or not.

• If the airport or heliport is certified according to the International Civil Aviation Organization

(ICAO)

• The primary organization type (controlType) which controls the airport or heliport, which

can be either civil or military.

• The designator of an airport or heliport.

• The International Civil Aviation Organization (ICAO) location indicator of the port.

• The primary official name of the port designated by appropriate authority.

• The indication if an airport or heliport is for private use only, which means that the airport

or heliport is only for the use of the owners.

• The airport or heliport type, which can be either an aerodrome only, combined

aerodrome/heliport or a simple landing site.

11

As it can be seen in Figure 1 the AirportHeliport class also has associations with other

classes [6]:

• From the AirportHeliport class to

o OrganizationAuthority, authority/organisation/state that is responsible for the

air- or heliport.

o City, that is served by this airport.

• To the Airport/Heliport class from

o AirportHotSpot, defines the airport where the hot spot has been identified. A

hot spot is a location with a history or potential risk of collision or runway incursion

and therefore a heightened attention by the pilots is necessary.

AIXM also contains a Temporality Model [10], as the information and notifications are usually

provided in advance of their effective dates, which means that the aeronautical systems must store

both, the data of the current situation and the future changes. Furthermore, many changes

indicated by AIXM notifications modify the baseline only temporarily. As the Temporality Model is

not considered in the mapping procedures it is not explained further within this thesis.

Figure 1. Simplified AirportHeliport class from the AIXM standard [6]

12

2.2 UML

The Unified Modelling Language (UML) is a standard for modelling software, systems, and data

that is administered by the Object Management Group (OMG). The primary usage of UML is to

specify, visualize, construct and document software systems artifacts, which are items that are

created or collected during the development of the software. Those artifacts can include

requirements, design, use cases, etc.

With UML, a standard procedure was created to write blueprints for software and systems. Those

blueprints not only contain technical artefacts but also conceptual things (system functions,

business processes) as well as concrete things (programming language, database schema,

reusable software components). But UML is not purely restricted to software modelling only, it can

also be used for modelling hardware, business processes, system engineering and organizational

structures. The intention behind UML is to provide a common way of expressing and capturing

behaviours, relationships, and high-level ideas in a notation that is not only easy to learn but also

efficient to write.

When specifying and designing a system, different viewpoints should be considered to achieve a

broader and more comprehensive understanding of the software that should be built. UML allows

to look at the system from different viewpoints, with the different diagram types the language

provides. For further information on UML this thesis refers to [13] and [14].

As it was already mentioned in the introduction (Chapter 1), this thesis only considers class

diagrams. Class diagrams belong to the “static structural viewpoint” of UML. Models that are

described with that viewpoint in mind picture the structural aspects of a system. Therefore, the

class diagram belongs to the main UML diagram type “structure diagrams”. Those diagrams help

with the visualization, specification, construction, and documentation of the systems static

aspects.

2.2.1 Class Diagram

As it was already mentioned above the class diagram is part of the structure diagrams of UML.

This type of diagram is the most used and common diagram that is found in the object-oriented

systems. The class diagram is used for illustrating the static viewpoint of a software system by

using a set of classes, interfaces, and their relationships (see Figure 2). It includes the following

elements [13]:

• Class

o A class is a template to create the objects and provides a specification of the object

attributes and the operations (function or procedures) that a class instance can

execute.

• Interface

o An interface is a contract consisting of a public set of operations and attributes for

a specific class.

o Every instance of that specific class, that also realizes the interface must fulfil the

contract of that interface.

o Interfaces are not instantiable, instead they are implemented by a class instance.

• Relationship

o Relationships specifies the connection of elements with each other.

13

o An element can reference one or more related elements and this relation can either

be logical or physical.

o UML defines many different relationship types:

▪ Generalization relationship connects generalized classes to specialized

classes. (For example, the superclass-subclass relation)

▪ Association is a structural relationship between classes. Associations map

the physical structure of things.

▪ Dependency relationship states that an entity uses services and information

of another class.

• Enumerator

o An enumerator is used when a definite set of values need to be specified.

o Example: A Boolean can be specified with the definite set of the values “true” and

“false”.

Figure 2 - UML class diagram of AIXM routes [6]

14

2.2.2 XML Metadata Interchange

XML Metadata Interchange (XMI) is a machine-readable representation for models. To use that

format the model must be defined in terms of the Meta Object Facility standard (MOF). Since the

UML metamodel is defined as a MOF metamodel, this format can be used as a model interchange

format for UML. For more information on XMI the thesis refers to [15]. Based on Figure 2 this

section explains the representation of the UML diagram in XMI.

The class Route in the AIXM model is represented with the XML tag ownedMember and the

attributes xmi:type, xmi:id and name (see Figure 3). The attribute xmi:type declares that

this element is an UML class and should be created and displayed as an UML class, when the

XMI file is viewed in a Modelling-Software such as Enterprise Architect. The attribute xmi:id and

name define the ID of the element and the name. The attributes of the class Route are

represented with the XML tag ownedAttribute with the same attributes, that were already

explained above.

Figure 3 - Definition of class "Route" in XMI (Excerpt)

15

The association between two classes is represented with the XML element connector. The

connector contains two sub elements source and target, which represent the two classes that

are associated with each other. For example, Figure 4 shows the association between Route

(source) and RoutePortion (target). The direction of the association can be found in the

XML element properties in the attribute direction.

Figure 4 - Definition of association between Route and RoutePortion in XMI

The XMI representation of the AIXM model serves as the basis for the transformation of AIXM

UML into RDFS (see Chapter 3).

16

2.3 RDF

The Resource Description Framework (RDF) provides a uniform and integrated access to

information services and sources. The original purpose of the RDF language was for representing

metadata for Web resources and objects which can be identified on the Web. RDF can also be

used to integrate data from different systems. RDF has since become a general framework to

exchange and integrate data. Furthermore, RDF is a widely used representation format for

knowledge-based systems. For additional information on RDF the thesis refers to [16] and [17].

In order to work with RDF data, the Apache Jena framework [9] can be used. Apache Jena is an

open-source framework for Java, to help with building Linked Data and Semantic Web

applications. The framework supports SPARQL for querying and updating RDF models and its

server which can present RDF data and process SPARQL queries. It also contains the RDF API

which can be used to read, write, and validate RDF data. In this thesis, Apache Jena was used

for validating the generated RDF

2.3.1 Vocabulary and Statements

The data model of RDF is based on the concept of RDF statements, which makes the data model

very simple and flexible. RDF Statements are built in the triple form, which means it consists of a

subject, a predicate, and an object. The predicate represents the binary relationship between the

subject and the object. While literals are allowed as objects of an RDF Statement, they may not

be used as a subject or predicate. There is a distinction in the data model between resources and

literals:

• Resources are object identifiers represented by URIs.

• Literals are strings.

The RDF vocabulary is very synonymous with XML namespaces, because it consists of a set of

URI. Although the vocabulary is a set of URI, the URI must be unique within the vocabulary. Table

1 contains two RDF statements. Both statements have the same subject because the URI of the

subject identifies a certain document. The first statement can be read as following. The resource

http://www.cat.com/airportHeliport#R20301 has a predicate servedCity (which is

described in http://purl.org/dc/elements/1.1/servedCity). The value of the

predicate is the resource http://www.cat.com/city#ID110 (object).

17

Table 1: RDF statements examples [16]

Statement Element Value (URIref or iteral)

1 Subject http://www.cat.com/airportHeliport#R20301

Predicate http://purl.org/dc/elements/1.1/servedCity

Object http://www.cat.com/city#ID110

2 Subject http://www.cat.com/airportHeliport#R20301

Predicate http://purl.org/dc/elements/1.1/name

Object John F. Kennedy International Airport

2.3.2 Triples and Graphs

A basic serialization format of RDF statements can be the following:

• <Subject> <Predicate> <Object>. → This form is used if Object is a relative or absolute

URIref.

• <Subject> <Predicate> “Object”. → This form is used if Object is a literal.

Figure 5 shows an example of RDF triples from the RDF statements in Table 1.

A set of RDF triples can be considered a graph. Within such a graph the subject and the object of

RDF triples are represented as nodes. The predicates of the RDF triples are represented by arcs.

If nodes are labelled with literals, the node has the form of a box. If nodes are labelled with URIrefs,

the node has the form of an ellipse. Only absolute URIrefs are allowed for the nodes and arc

labels. Figure 6 shows an example of a visualized RDF graph, from the RDF statements in Table

1. For further information on this topic this thesis refers to [16] and [18].

Other RDF notations like RDF/XML or RDF/Turtle will be explained in chapter 2.3.3 and 2.3.4.

Figure 5 - Code example for RDF triples

18

2.3.3 RDF/XML

RDF/XML is another notation for RDF statements and is the preferred notation in the domain of

semantic web. The RDF vocabulary serves as the basis for RDF/XML (see Table 2). Figure 7

gives and overview of the RDF/XML notation:

In the rdf:RDF tag the vocabularies of the schema (cs), of RDF (rdf) and of the Dublin Core

(dc) are set. The tag cs:AirportHeliport defines the RDF statement from Table 1. It indicates

that the AirportHeliport is associated with the city the airport serves. With the dc:city tag

the city predicate of the subject “#R20301” is defined. The attribute rdf:resource indicates the

object of that specific subject. The same goes for the tag dc:name. It is another predicate of the

subject ““#R20301” and has the literal value “John F. Kennedy International Airport”. The meaning

of rdf:about and rdf:resource are explained in Table 2. The thesis refers to [16] for more

detailed information.

Figure 6 - Example of RDF graph [16]

Figure 7 - Code example for RDF/XML [16]

19

2.3.4 RDF/Turtle

Another notation for RDF statements is the textual notation RDF/Turtle. With this notation it is

possible to write an RDF statement in a natural and compact text form. The following example

gives an overview of a RDF statement in the RDF/Turtle notation [19]:

As it is shown in Figure 8, an RDF/Turtle statement consists of sequences of subjects, predicates,

and objects. The statement is terminated with a dot (“.”) and the subject, predicate and object are

separated by a whitespace. A simple triple statement of this RDF/Turtle model would be the

following:

Figure 9 - Code example of a triple statement in RDF/Turtle

In some cases, the same subject will be referenced by one or more predicates. The series of those

predicates with their object value are separated by a semicolon (“;”). In RDF/Turtle a predicate list

is modelled as follows:

2.3.5 RDF Schema

RDF in general is very flexible, but it offers no way to define application-specific properties and

classes. Therefore, RDF Schema was introduced and with it an extensible type system to RDF.

The schema offers ways to model hierarchies of properties and classes, which partly cured the

lack of expressiveness of RDF. More precisely, with the RDF Schema class and subclass

hierarchies as well was property domains and ranges can be defined. The thesis refers to [16] and

[17] for further details.

Figure 8 - Code example for RDF/Turtle

Figure 10 - Code example of predicate list in RDF/Turtle

20

Class

A class in RDF Schema is a resource that has an rdf:type property with the value rdfs:Class.

rdfs:Class is part of the RDF Schema vocabulary. A class can also be defined as a subclass

of another class. This can be done with the property rdfs:subClassOf. Figure 11 shows how

a class, and a subclass can be defined, while Figure 12 shows the same example in the RDF/XML

notation.

Figure 12 - Code example for RDF/XML class notation

Property

A property in RDF Schema is an instance of the class rdf:Property. rdfs:domain indicates

that a certain property applies to a certain class. rdfs:range indicates that the value of a certain

property is an instance of a certain class or of a certain XML Schema datatype. The example

below shows the usage of an rdf:Property with a XML Schema datatype as range:

Figure 13 - Code example for RDF/XML property notation

Figure 11 - Definition of an RDF Class and Subclass

21

2.3.6 Summary of Important RDF(S)Vocabulary

Table 2 states the RDF and RDF Schema vocabulary that was used in this thesis.

Table 2: RDF/RDF Schema vocabulary [16]

Basic RDF Vocabulary

Term Description

rdf:RDF Indicates an RDF/XML document.

rdf:about Indicates the subject of an RDF statement.

rdf:resource Indicates the object of an RDF statement.

Basic RDF Schema Vocabulary

Term Description

rdfs:Class Resource indicating the class of all classes.

rdfs:subClassOf Property that defines that a class is a subclass of

another class.

rdf:Property Resource indicating the class of all properties.

rdfs:domain Property that is used to indicate that a particular

property applies to a designated class (= domain of

that property).

rdfs:range Property that is used to indicate that the values of a

property are instances of a designated class (= range

of that property).

22

2.4 RDF Mapping Language

The RDF Mapping language (RML) [20] [21] is based on R2RML [20] [21] and is a superset of

R2RML. With RML, customized mapping rules can be expressed to map heterogeneous data

structures and serializations into the RDF data model. R2RML, on the other hand, is the W3C

standard mapping language for mapping relational databases into RDF. RML aims to broaden the

scope of R2RML to provide a mapping for multiple heterogeneous sources, which leads to higher

integrated datasets and also a better, richer interlinking among the resources.

2.4.1 R2RML

With R2RML, customized mappings can be expressed to convert data from a relational database

into an RDF dataset. One or more triples maps are the basis of an R2RML mapping, which

consists of three parts:

• one logical table (rr:LogicalTable)

• one subject map (rr:SubjectMap)

• zero or more predicate-object maps (rr:predicateObjectMap).

Thus, a triples map is a rule which defines how the tuples of the logical table will be mapped to

RDF Triples. The mapping of the data is carried out using a logical table with an iteration over

the rows of the table. As a logical table can either be used a relational table, an SQL view or an

SQL select query. The rule that is used to generate the URIs for the resources is defined in the

subject map. All RDF triples that are generated from a triples map use the same subject map to

obtain the subject of the triple. The predicate-object map also consists of two parts:

• Predicate Maps

• Object Maps

While the predicate map contains the rules that generate the predicates of the RDF triples, the

object map contains the rules that generate the objects of the RDF triples. Together, the subject

map, the predicate map and the object map form the term map. This map is used to generate

the RDF terms, which means in the domain of R2RML a RDF term corresponds to the term RDF

statement. This term map can either be a constant-valued Term Map or a column-valued Term

Map. A constant-valued term map generates the same RDF term, while a column-valued term

map is a string template that is valid and can contain referenced columns.

A join condition (rr:joinCondition) is needed, when the triples maps refer to different logical

tables. The R2RML join condition works exactly like the join in SQL:

• It consists of the reference to a column name which exists in the logical table of triples

map.

• The triples map contains

o the Referencing-Object-Map (rr:child) and

o the reference to a column name which exists in the logical table of the triples map

of the Referencing Object Map (rr:parent)

23

Figure 14 summarizes all the above explained concepts of R2RML graphically.

2.4.2 RML and its Differences to R2RML

RML retains the mapping definitions of R2RML but excludes all the references specific to relational

databases from the model. In comparison to R2RML, the potential input in RML is not limited to a

relational database and it also can be a variation of one or more input sources. RML also defines

the mappings in a more generic way, so they are easier to cover other references of other data

structures. But in general the RML mapping follows the same syntax as R2RML. Table 3

summarises the differences between R2RML and RML.

Table 3: Summary of differences between R2RML and RML [20]

 RML R2RML

Input reference Table name Source

Value reference Column Reference

Iteration model Per row (implicit) Defined

Source expression SQL (implicit) Reference formulation

The following section will address and explain the concepts of R2RML (Section 2.4.1) in the frame

of RML. Concepts like the definition and explanation of the triples map, subject map and predicate-

object map will not be made, as they do not differ between R2RML and RML.

Figure 14 - R2RML concepts [21]

24

Logical Source

RML’s logical source is an extension of R2RML’s logical table. It is used to define the input source

with its data, that should be mapped to RDF triples. While in R2RML the logical table defines the

database table that should be mapped, in RML the logical source can define any input source.

Therefore, the generic concept of the logical source was introduced in RML.

Reference Formulation

As RML offers a broader variety of input sources, it also needs to deal with different data

serialisations and therefore, with different ways to refer to the elements or objects. While R2RML

uses the column names for this purpose, in RML any reference to the logical source needs to be

defined in a way that is relevant to the input source. RML uses the reference formulation to indicate

the formulation that is used to refer to the input source’s data, for example if an XML file is used

XPath was defined as the reference formulation.

Iterator

In R2RML the definition of the iterator is implicit because it is already known that a per-row iteration

is necessary. As the logical source in RML can refer to any data source, the iteration pattern

cannot be implicitly assumed, so it needs to be defined. Therefore, the iterator was introduced in

RML to define the iteration pattern over the input source. The iterator also specifies the data extract

that should be mapped with every iteration. That means, the iterator specifies or defines how the

data should be accessed. If the input data source is for example an XML document, the iterator

can be defined as an XPath expression.

Logical Reference

R2RML uses a column-valued term map to determine the column names of the database. With

RML a more generic way is needed and therefore the logical reference was introduced. The value

of the logical reference must be a valid reference to the input dataset’s data. It should be a valid

reference according to:

• the already defined reference formulation,

• the string template that is used to define the template-valued term map and

• the value of the iterator.

25

Referencing Object Map

The last concept that is extended by RML is the referencing object map. In RML the join condition

works as follows:

• The child reference (rr:child) defines the reference to the data value of the logical

source which contains the referencing object map.

• The parent reference (rr:parent) defines the reference to the data extract of the parent

triples map of the referencing object map. The reference of the parent is defined with a

reference formulation that is defined in the logical source of the parent triples map

(rr:parentTriplesMap).

Figure 15 shows the above-mentioned explanation of the join condition in a code example.

Which means the ID that is referred to in the rr:child reference is the ID of the city that is

contained in the airport-heliport triples map, while the ID that is referred to in the rr:parent

reference is the ID of the city of the <#Location-Mapping> triples map that is stated in the

rr:parentTriplesMap.

Figure 15 - Code example for a join condition in RML [20]

26

Figure 16 summarises the above explained concepts of RML graphically. The green-coloured

boxes are the concepts that are extended by RML, while the boxes in orange are the concepts

that are specific RML concepts.

To execute the RML rules that were written to map the data into RDF, the tool RMLMapper was

created by RML.io. It is a command line tool, where the RML rule file can be selected and

executed. After a successful execution a RDF file will be created with valid RDF data. [8]

Figure 16 - RML concepts [21]

27

2.5 XML and XQuery

The Extensible Markup Language (XML) is a mark-up language that was designed for describing

structured documents. Compared to HTML, XML is a flexible hierarchical data model consisting

of elements. In XML the tags also do not have semantics that indicates how the documents should

be presented through a Web browser. By default, an XML document (see Figure 17) consists of

plain text and markup (tags), that can be interpreted by applications. Usually, an XML document

starts with an optional instruction tag that contains the encoding declaration (UTF-8, UTF-16, etc.)

as well as the version of the XML document. For further information on XML the thesis refers to

[16] and [22].

In an XML document, a start tag and an end tag mark an element, the contents of the element

contained between those tags. When an XML tag has no content, an empty-element tag can be

used for this purpose. An example for an empty-element tag can be seen in the second

airportHeliport element with the ICAO tag. XML elements can be nested in other XML

elements. This is used to define a structure for the document. Usually there is one root element

(airportHeliports) and within this root element, other elements of the same type are nested

(airportHeliport).

Element tags (start-tag and empty-element tag) can contain zero ore more attributes. An attribute

consists of a name that is followed by an “=” which is followed by the value of the attribute. The

value of the attribute is usually enclosed in double quotes. The start-tag airportHeliport for

example has the attribute docid=”www.cat.com/airportHeliport#R1”.

XML also has the concepts of URI, URI reference, Namespace, and qualified name. These

concepts are fundamental to structure the Semantic Web as a federated, distributed information

space, because these concepts provide a scheme for addressing which is distributed, effective

and stable.

Figure 17 - Code example for XML [16]

28

Table 4 gives an explanation and an example to the XML concepts that were mentioned above.

Table 4: XML concepts [16]

Term Explanation Example

Resource Anything with an identity,

be it a retrievable digital

entity or a physical entity

Digital entity: Image, electronic document, etc.

Physical Entity: Book, etc.

Uniform

Resource

Identifier (URI)

Identifies a resource in the

Web with a character

string

URI following the HTTP scheme:

http://www.mysite.com/pub/foobar.html

URI Reference

(URIref)

URI with an optional

fragment identifier. The

fragment identifier is

preceded by the character

“#”.

URIref identifying an individual.

http://www.w3.org/People/EM/contact#me

Namespace Collection of names,

identified by a URIref

RDF namespace:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

With the prefix: rdf

Qualified

Name

(QName)

Identifies a name in a

namespace.

Syntax: n:p

n = namespace prefix

p = local part

QName rdf:description:

Namespace = rdf

Local part = description.

It expands to the URIref:

http://www.w3.org/1999/02/22-rdf-syntax-

ns#description

To process and query those XML data sources, the XML query language XQuery [23] was

invented. XQuery is designed in a way, that queries are concise and can be easily understood.

XQuery is a functional programming language [24] and it can also be used to transform XML

documents.

29

3 Schema Mapping

The Unified Modelling Language (UML) is a widely used modelling language for the representation

of data sources. For an introduction to UML, the thesis refers to Section 2.2. For further information

on UML the thesis refers to the UML standard [25]. UML is also used to represent the AIXM

standard. This chapter first presents the general rules for mapping UML to RDFS. It then

exemplifies how those rules can be used to transform the AIXM schema into RDFS.

3.1 Rules

This master’s thesis considers UML classes and their attributes, associations between classes,

and generalization/specialization. Table 5 gives an overview of the mapping rules, which will be

explained in the following. In general, these rules help to transform the XMI representation of the

UML class diagram to the RDFS representation.

Table 5: Overview of the mapping rules for UML to RDFS according to [26]

UML RDFS

Class rdfs:Class

Attribute rdf:Property

rdfs:domain rdfs:range

Association rdf:Property

rdfs:domain rdfs:range

Generalization rdfs:subClassOf

The rules defined in the following section are used to produce valid RDFS from UML class

diagrams. Rules 1 to 3, 5 and 6 were taken as-is from Tong et al. [26]. Rule 4 was modified with

respect to Tong et al. to ensure that the associations are still navigable after the transformation

from UML to RDFS is conducted.

• Rule 1: Identifier mapping

Each class diagram has a set of identifiers. For each identifier in this set, a corresponding

international resource identifier (IRI) must be created. If the UML class diagram contains

two identifiers with the same name, one of the identifiers must be renamed during the

transformation process. Within the thesis the URI consists of the URL “http://aixm.aero/”

and the name of the UML class, the attributes of the UML class or the associations of the

UML class. If for example a name of an attribute of an UML class appears more than once,

the class name was added to the attribute name.

• Rule 2: Class mapping

For each class in the class diagram an RDFS class must be created.

Figure 18 - Code example for RDFS class

30

• Rule 3: Generalization mapping

If the class airfield in the class diagram is a generalization of another class (airport),

then the class airfield is the superclass of airport, which in turn is referred to as the

subclass of airfield. In RDFS, the property subClassOf establishes the generalization

relationship.

• Rule 4: Association mapping

For each association in the UML class diagram an RDFS class must be created. In order

to make the associations navigable, the following approach was chosen within the master’s

thesis. For each association in the UML class diagram, an RDFS property must be created.

For each property, the domain and range is defined. The domain contains the source of

the association and the range contains the target of the association.

• Rule 5: Attributes mapping

Each class consists of one or more attributes and for each attribute of the class, an RDFS

property must be created. Each property consists of a domain and a range. The domain

refers to the class to which the attribute belongs. The range specifies the datatype of the

attribute.

Figure 19 - Code example for the generalization mapping

Figure 21 - Code example for attributes mapping

Figure 20 - Code example for association mapping

31

• Rule 6: Datatype mapping

For each datatype in the UML class diagram a corresponding RDFS datatype must be

defined. In general, RDFS uses XML Schema datatypes for the equivalent UML data types

as shown in Table 6.

Table 6: Mapping of UML datatype to RDFS [26]

UML RDFS

string xsd:string

smallint xsd:short

integer xsd:integer

decimal xsd:decimal

float xsd:float

time xsd:Time

date xsd:Date

3.2 Transformation Procedure

In the following, this section illustrates how to work with the general mapping rules on an example

from the AIXM standard. This section thus explains how to create valid RDFS from UML class

diagrams using the presented mapping rules. In detail that means this section shows the

transformation of the UML XMI representation to the XML representation of RDFS. Figure 22

shows a simplified extract of the UML representation of information about airports and runways

from the AIXM specification.

Figure 22 - Simplified AIXM UML diagram

32

3.2.1 Step 1: Examination of the UML Diagram

In order to get started the first step is to fully identify classes, attributes, association and their

direction and generalization/specialization relationships between classes of the UML class

diagram that should be mapped.

Classes and Attributes

The simplified AIXM diagram contains eleven classes, e.g., Runway, AirportHeliport and

Note. Each class contains attributes, for example the class Runway has the attributes

designator, nominalLength and nominalWidth.

Associations

The class Runway has several associations. Now the source and target classes of the

associations must be identified. For example, the association between Runway and

RunwayClosureMessage.

In this association the class RunwayClosureMessage is the source and the class Runway is the

target. While one runway can have zero or many closure messages, one closure message can

only belong to a maximum of one runway. The runway to which the closure message belongs is

defined in the closure message. This is the reason, why the closure message is the source of this

association.

Figure 23 - Association between Runway and RunwayClosureMessage

33

Figure 24 shows the XML representation of the association between Runway and

RunwayClosureMessage (Figure 23). While source and target always define the classes that

are linked through the association, the actual direction can be found in the element properties

in the attribute direction (see Table 7 for details). In case of Figure 24, the source is greater

than (“->”) the target, which means the association flows from source to target. The type of the

connection can be found in the element properties in the attribute ea_type. Consequently,

when mapping the associations, only the connectors that have the attribute ea_type with the

value Association have to be considered.

Table 7: Direction of association

Attribute content Association flow

“Source -> Destination” Source → Target

“Destination -> Source” Target → Source

 Figure 24 - XMI representation of the association between Runway and RunwayClosureMessage

34

Generalization

The class AIXMBasicMessage is the superclass of RunwayClosureMessage and

RunwaySurfaceConditionMessage (see Figure 25).

Figure 26 shows the XMI representation of the generalization from Figure 25. The tags relevant in

this figure are the source, target and properties tags. The remaining tags only serve to

graphically represent the association between the classes in the UML diagram.

Figure 25 - Generalization example of the simplified AIXM UML
diagram

Figure 26 - XMI representation of generalization relationship between AIXMBasicMessage and
RunwayClosureMessage

35

In the example in Figure 26 the target of this connection defines the superclass

(AIXMBasicMessage), while the source defines the subclass (RunwayClosureMessage). The

type of the connection can again be found in the element properties in the attribute ea_type.

That means, when mapping the associations only the connectors that have the attribute ea_type

with the value Generalization have to be considered.

3.2.2 Step 2: Transforming Classes and Generalizations

Step 2 of the procedure is to create an rdfs:Class element for each class in the UML class

diagram. When looking at Figure 27, the UML classes are defined with the element

packagedElement and the property xmi:type with the value uml:Class. Thus, for each UML

class defined in the XMI representation (see Figure 27) an rdfs:Class element must be defined.

Figure 28 shows the XML representation of the resulting RDFS class for the UML class Runway.

Figure 28 - RDFS class Runway

If the UML class has a generalization connector, an rdfs:subClassOf element must be defined.

For the generalization mapping, only the connectors with the property ea_type and the value

Generalization must be considered. Figure 26 shows an example of a generalization

connector.

Figure 27 - XMI representation of the UML class Runway

36

As it can be seen in Figure 25 the AIXM class RunwayClosureMessage is a subclass of the

AIXM class AIXMBasicMessage. Figure 29 shows the XML representation of the RDFS class for

the UML class RunwayClosureMessage.

3.2.3 Step 3: Transforming the Attributes

The third step of the procedure is the mapping of the attributes. For each attribute of a class an

rdfs:Property element must be created. The attributes are declared with the XML element

ownedAttribute and the property xmi:type with the value uml:Property (Figure 27). The

domain of the property defines the class to which the attribute belongs to, while the range of the

property defines the datatype of the attribute. As it can be seen in Figure 27, the class Runway

has three attributes: designator, nominalLength, and nominalWidth. Figure 30 then shows

the result in RDFS for the attributes of the class Runway.

3.2.4 Step 4: Transforming the Associations

The last step of this procedure is the mapping of the associations. For each association an

rdfs:Property element must be created. The domain of the property refers to the source of the

association, while the range of the property refers to the target of the association. As it can be

seen in Figure 22 the class Runway has five associations. An example of an association definition

can be found in Figure 23. For the mapping of the associations only the connectors with the

property ea_type that have the value Association have to be considered; the direction of the

Figure 29 - RDFS mapping result RunwayClosureMessage

Figure 30 - RDFS mapping result of the attributes of the class Runway

37

association is also important (see Section 3.2.1 for details). Figure 31 shows the result in RDFS

for the associations of the class Runway.

Figure 31 - RDFS mapping result of the associations of the class Runway

38

4 Instance Data Mapping

This chapter describes how to define the R2RML mapping rules that are needed to transfer the

XML instance data for a particular ATM information model to RDF. In particular, the first section

explains the elements of R2RML mapping rules in general, with an illustration from AIXM. are

necessary to create RDF from AIXM instance data. In the second section the procedure on how

to exactly define and create the mapping rules is explained.

4.1 Mapping Rules

In this Section, the thesis describes which RML mapping rules have to be defined to transform

AIXM XML data into RDF. For more information, the thesis refers to Dimou et. al ([20]) and

Kyzirakos et. al ([21]) as well as the tutorial “Generate RDF from an XML file” [8]. The thesis also

refers to Section 2.4 for a quick introduction to RML mapping rules. In general, there are two basic

rules behind the creation of the RML mapping rules:

1. Rules that describe the XML file.

o Definition of the logical source.

2. Rules that define how the RDF terms (subject, predicate, and object) are created and how

they are assembled into an RDF triple.

o Definition of the subject map, predicate map and object map.

Both basic rules are combined to a triples map (Rule 1), as it groups all the rules. Rule 2 belongs

to the first main rule and the Rules 3 to 5 belong to the second main rule.

• Rule 1: Triples Maps

Looking at the XML file that contains the instance data, there is one main element in the

XML file and for that element a triples map needs to be declared. Figure 32 shows the

declaration of a triples map for the transformation of AirportHeliport elements into

RDF.

If the element AirportHeliport contains sub-elements that represent associations to

other classes, another triples map needs to be declared (see Figure 33).

• Rule 2: Logical Source

For each triples map, a logical source definition is needed. The logical source contains the

data source, the reference formulation, and the iterator for the data source. Figure 34

shows the logical source of the AirportHeliport triples map (see Figure 32).

Figure 33 - Declaration of a second triples map

Figure 34 - Definition of the logical source

Figure 32 - Declaration of a triples map

39

• Rule 3: Subject Map

Each triples map needs one subject map, which contains the subject of the RDF Triple.

Figure 35 shows the definition of the subject map.

• Rule 4: Predicate-Object Maps

Each triples map can have one or many predicate-object maps, that define the predicate

as well as the object of the RDF Triple. Figure 36 shows the definition of a predicate-object

map.

The first predicate-object map annotates the predicate and objects to the class and is only

needed once. The second predicate-object map annotates the value of the designator

(object) with the predicate aixm:designator and is needed again for all the elements

that are nested within the AirportHeliport element.

Figure 35 - Definition of the subject map

Figure 36 - Definition of the predicate-object map

40

• Rule 5: Associations between Triples Maps

In order to use subjects of another triples map, a referencing object map is needed (see

Figure 37). The predicate-object map refers to another triples map #City with a join

condition which defines how the two triples maps should be joined. The second part of the

figure shows the triples map the predicate-object map refers to.

A join condition is necessary when the triples maps are based on different logical sources.

As both the triples map City and the triples map AirportHeliport have different

logical sources respectively a different iterator a join condition is necessary. The triples

map City is defined according to the rules described above.

4.2 Defining the Mapping Rules

This Section explains and exemplifies how to create RML mapping rules that can be processed

with the RMLMapper ([8]) to create valid RDF data. To process the RML mapping rules with the

RMLMapper, the notation in which the RML rules must be written is RDF/Turtle. To explain the

rules in more detail the simplified AIXM XML instance data in Figure 38 is used as a running

example throughout this.

Figure 37 - Definition of associations between triples maps

41

Figure 38 - XML instance data example

42

4.2.1 Step 1: Understanding the XML File

The first step of the procedure to create the RML mapping rules, is to understand the XML file and

its structure. This includes the identification of

• the main element for the triples map

• the iterator for the logical source

• the associations and their own logical sources

At first, the main element, the subject of the RDF triples needs to be identified. In this example the

main element would be the AirportHeliport element because this XML file contains the

instance data about the Air- and Heliports. This means, that the triples map will be the

AirportHeliport triples map (see Section 4.2.2).

The next part would be the identification of the iterator for the logical source. The iterator defines

the pattern with which the XML file is to be iterated. As the element

AirportHeliportTimeSlice is the element that contains all the sub-elements with the Air-

/Heliport data, this element is thus the iterator. The definition of the iterator in this example would

be “//AIXMBasicMessage//AirportHeliport//AirportHeliportTimeSlice”.

The last part of this step is the identification of associations and their own logical sources. When

looking at the example (Figure 38), each AirportHeliport has an association (servedCity)

with a City. As the City element is a super-element on its own, a second triples map is needed,

as well as another iterator, because the City element ins more nested in the XML file. The iterator

for the triples map City would be “//AIXMBasicMessage//AirportHeliport//

AirportHeliportTimeSlice//City”.

4.2.2 Step 2: Definition of the Tiples Map and its Content

After the understanding process of the XML file, the triples maps and its content can be defined in

the second and last step of this process.

Step 2.1: Definition of the Prefixes

The first step in the creation process is to define the needed prefixes for RML, R2RML, RDF and

AIXM (Figure 39).

Figure 39 - Prefixes for the RML mapping rules

43

Step 2.2: Definition of the Triples Map and the Logical Source

After the prefix declaration, the triples map AirportHeliport with the logical source is defined

(Figure 40). The value of rml:source is the XML file, the contents of which are shown in Figure

38, the value of rml:iterator is the iterator that was identified in Section 4.2.1 and the value

of rml:referenceFormulation is XPath, as the file to be processed by the RMLMapper is a

XML file.

Step 2.3: Definition of the Subject Map

After the definition of the logical source the subject map is defined (Figure 41). The subject map

states the RDF term “subject” for the resulting RDF triples. In this example the ID of the

AirportHeliport is the subject of the RDF triples.

Figure 40 - Definition of triples map and logical source

Figure 41 - Definition of subject map

44

Step 2.4: Definition of the Predicate-Object Maps and the Join Conditions

The last step in the creation procedure is the definition of all the predicate-object maps and the

necessary join conditions (Figure 42). For each sub-element of the element

AirportHeliportTimeSlice a predicate-object map needs to be defined. Within the

predicate-object map, the value of rr:predicate is the name of the RDF term “predicate”, while

the value of the rr:objectMap references to the element in the XML file, where the RMLMapper

extracts the value for the RDF term “object”.

Figure 42 - Definition of the predicate-object maps and the join conditions

45

The predicate-object map for the element servedCity contains the join condition to the triples

map City. The value of the rr:parentTriplesMap is the name of the triples map City. The

rr:joinCondition contains the values for rr:child rr:parent, which specify the key to

be used to perform the join. The value of rr:child defines the key on the side of the triples map

AirportHeliport while the value of rr:parent defines the key on the side of the triples map

City and in this example both triples maps are joined via the ID of the City.

4.3 Transforming AXIM XML Instance Data to RDF Using RMLMapper

After the creation of the RML mapping rules in Section 4.2, this section shows and explain how to

process the RML mapping rules with the tool RMLMapper ([8]) to receive valid RDF instance data.

Step 1: Compiling the Source Code

To use the RMLMapper, the project needs to be checked out from the RMLio GitHub page via Git

or another version management software, like Sourcetree, which was used within this master’s

thesis.

After the check-out of the project the source code needs to be built, with either the command line

or an integrated development environment (IDE), such as Eclipse or IntelliJ. Within this thesis the

Eclipse IDE was used, therefore this section will explain the building process within Eclipse.

The first step is to import the project as a Maven project. After the import, the first step is to

successfully build the Maven project. Once the project has been built, the project can now be

installed. After the successful maven install the “target” folder within the project should now contain

two JAR-Files.

Figure 43 - target folder after the successful maven install

46

Step 2: Using the RMLMapper to Process the RML Rules

After the successful maven install, the second step can be carried out. Therefore, the XML-File

needs to be copied into the folder “target”, right where the .jar-Files were filed after the install.

Figure 44 shows the content of the “target” folder, after the insertion of the XML-File.

Next, a command terminal is needed, which needs to be opened in the “target” folder. After

opening the command terminal, the command in Figure 45 needs to be executed, to create the

RDF instance data with the RML mapping rules.

Figure 44 - Content of the RMLMapper target folder

Figure 45 - Command line command for running the RMLMapper

47

The first line of the command specifies that a Java JAR File is to be executed and which JAR-File.

In the second line of the command the RML mapping rules file is stated. With -m one or more

paths to the mapping files can be provided. After the execution of this command, the RDF instance

data is displayed in the command line. Figure 46 shows the mapped RDF instance data.

Figure 46 - Mapped RDF instance data

48

In order to save the mapping result into an output file needs to be adapted, as it is shown in Figure

47. With -o the path to the output file can be provided. After the execution of this command, the

RDF instance data no longer will be displayed in the command line but are saved into the defined

output file.

Figure 47 - Command line command for running the RMLMapper with defined
output file

49

5 Automating the Mapping Procedures

This chapter describes the automation of the mapping procedures defined in Chapter 3 and

Chapter 4. First, this chapter presents the tool that was created to automate the schema mapping

process and the adaptions that are necessary to process other schemas with this tool. The second

section explains the tool that was created for the creation of the RML mapping rules for the

instance data mapping and the adaptions that are necessary to create RML mapping rules for

other instance data.

All the implementations that are explained within this chapter were designed and tested using the

AIXM schema version 5.1.1 and the AIXM XML “Donlon” sample data. The presented

implementation do not consider the Temporality Model.

5.1 Schema Mapping

This section contains all the details that are necessary to understand, work with and adapt the tool

that was created to automate the schema mapping. It explains the tool itself and the adaptions

that need to be made to the tool, to map other schemas.

The tool to automate the schema mapping is an XQuery module which consists of two files: the

file that defines the data source (AIXM Schema 5.1.1) and the module call as well as the file that

contains the implemented mapping procedure. Since the AXM 5.1.1 UML schema is available in

XMI, which is the XML format to exchange metadata about UML models via XML, a language for

transforming XML documents is required; XQuery is one such language.

5.1.1 Tool for Automating the Schema Mapping Process

As described above the tool which automates the schema-mapping process consists of two files:

the call script and the processing module. The content, and the workings of both files will be

described in this section.

Call Script

Besides the module call the file also contains the declaration of the namespace. Figure 48 shows

the namespaces and imports that are necessary for this tool. The first two imports define on one

hand the path to the file that contains the functions to carry out the mapping to RDFS and on the

other hand the File module which contains the necessary functions to write the resulting RDFS in

a file. The path to the second file is an absolute path that points to the exact filing location of the

second file. The remaining lines contain the namespaces for RDF, XMI, UML, RDFS and the File

output.

Figure 48 - Schema Mapping tool - Module call namespaces

50

After the definition of the imports and namespaces, the actual module call is carried out. This can

be seen in Figure 49. The first line is the declaration of the variable that contains the path to the

output file, which needs to be created beforehand. The second line contains the module call. With

the function file:write the resulting RDFS is written into the declared output file.

rdfs:extractRDFSchema is the actual module call where AIXM 5.1.1 is passed on to the

module.

Processing Module

The processing module consists of five functions that will be explained in this section:

• rdfs:extractRDFSchema

• rdfs:extractUMLElements

• rdfs:extractUMLAttributes

• rdfs:extractUMLAssociations

• rdfs:extractUMLDiagrams

• rdfs:extractUMLDiagramElements

Before implementing the functions, however, namespaces must be also included in this file. Figure

50 shows the namespaces that must be included, in order for the module to work. The first line

defines the namespace of the module, which in this case is the namespaces of RDFS. The

remaining lines contain the namespaces for RDF, XMI and UML.

Figure 50 - Schema mapping tool - Namespaces of Process Mapping

Figure 49 - Schema Mapping tool - Module call

51

After the namespace declaration the first and main function rdfs:extractRDFSchema is

implemented as it is shown in Figure 51. In the first part of the function body four variables were

defined that are needed throughout the whole module, allElements, allClassElements,

allDiagrams and allGeneralizations. In the second part of the function body the remaining

functions are called, and the results are saved within variables. In the return string the contents of

those variables are put together to generate the mapped RDFS.

Figure 51 - Schema mapping tool - rdfs:extractRDFSchema

52

The second function within the processing module, rdfs:extractUMLElements, performs the

mapping of all UML elements within the class diagram. Those UML elements are mapped to RDFS

classes, as it is shown in Figure 52. The first part in the function body is the extraction of the

element name, which becomes the class name. This function also includes the mapping of the

generalizations. Which means, that if the element the function is currently looking at is a sub-class

of another class, it is mapped as the rdfs:subClassOf the super class. The function selects

from all associations those with the type Generalization and checks if the current element is

among them. If yes, the tag rdfs:subClassOf is generated. If not, the generation of the tag

rdfs:subClassOf is skipped.

Figure 52 - Schema mapping tool - rdfs:extractUMLElements

53

The function rdfs:extractUMLAttributes performs the mapping of the UML attributes (see

Figure 53). The function iterates over each element and creates a rdfs:Property element for

each attribute and for each attribute, the class the attribute belongs to and the datatype are

determined. The class is mapped as the rdfs:domain and the datatype as the rdfs:range.

This information is assembled within the return string.

Figure 53 - Schema mapping tool - rdfs:extractUMLAttributes

54

The next function, rdfs:extractUMLAssociations, maps the remaining associations (see

Figure 54). As it was already described in Section 3.2.1 the associations are restricted to

associations only and additionally, the direction of the association must be considered. After these

checks and depending on the direction of the association, the return string is compiled.

Figure 54 - Schema mapping tool - rdfs:extractUMLAssociations

55

The last two functions – rdfs:extractDiagrams and rdfs:extractDiagramElements –

are responsible for the mapping of the UML diagrams and the classes that belong to the different

diagrams. The first function (see Figure 55) generates for each UML diagram an rdfs:Class

tag, while the second function (see Figure 56) generates for each class within the diagram a

rdfs:Property tag, that has the diagram as the domain and the class as the range.

Figure 55 - Schema mapping tool - rdfs:extractUMLDiagrams

Figure 56 - Schema mapping tool - rdfs:extractUMLDiagramElements

56

5.1.2 Adaptation of the Tool to Map Other Schemas

Within the schema mapping tool, the following things need to be adapted in order to process or

map other schemas, e.g., IWXXM or FIXM, with it.

Call Script

Within the call script only the value of the db:open parameter (see Figure 57 yellow marking)

needs to be changed to the new database name.

Processing Module

The processing module file needs to be adapted a little bit more, as this module contains lots of

XPath expressions, which all need to be adapted to the new schema that should be processed.

This section contains an example section from the processing module to show, what needs to be

adapted. Figure 58 highlights the parts that need to be adapted in the main function of the

processing module:

• allElements = The value of this variable needs to be changed to the new main element

tag of the Schema file.

• allDiagrams = the value of this variable needs to be changed to the new main element

tag that is about the UML class diagrams of the new Schema.

• allGeneralizations = The value of this variable needs to be changed to the new main

element tag, that contains all the associations of the UML class diagram.

Figure 57 - Schema Mapping tool - Adaptions within Module Call file

Figure 58 - Schema Mapping tool - Adaptions within the Processing Module file

57

5.2 Instance Data Mapping

This section contains all the details that are necessary to understand, work with and adapt the tool

that was created to automate the creation process of the RML mapping rules. First, it provides

general information and describes the decisions that were made within this thesis regarding the

automation tool. Second, it also explains the tool and the adaptions that need to be made to the

tool to create RML mapping rules for other instance data.

The tool to automate the creation of the RML mapping rules is also an XQuery module, which too

consists of two files: the file that defines the data source and the iterator for the XML-File that

should be processed and the module call as well as the file that contains the implemented creation

process of the RML mapping rules. Since the AIXM instance data was available in XML, a

language for transforming XML documents is required; XQuery is one such language. Although

the RMLMapper needs the RML mapping rules in the RDF/Turtle format, XQuery was chosen,

because it was easier to generate the RML mapping rules in RDF/XML and convert them to

RDF/Turtle, than implement the automated creation process in a different language. Based on the

points made above the technology choice to implement the tool for automating the creation

process of the RML mapping rules has been XQuery. The reason the tool RMLMapper was chosen

within this thesis and not a complete self-implementation of the mapping process was that a

functioning mapping tool for instance data already existed. Therefore, to save time and effort, the

tool RMLMapper was used.

5.2.1 Tool for Automating the Creation of the RML Mapping Rules

As it was already described above the tool which automates the creation process of the RML

mapping rules also consists of two files, the call script, and the processing module. The content,

and the workings of both files will be described in this section.

Call Script

This file contains beside the module call, also the declaration of the namespaces. Figure 59 shows

the namespaces and imports that are necessary for this tool. The first two imports define on one

hand the path to the file that contains the functions to carry out the creations of the RML rules and

on the other hand the module “File” which contains the necessary functions to write the resulting

mapping rules into a file. The path to the second file is again an absolute path, which points to the

exact filing location of the second file. The remaining lines contain the namespaces for RDF, XMI,

UML, RDFS, File output, XML Schema and AIXM.

Figure 59 - RML mapping rules tool - Module call namespaces

58

After the definition of the imports and the namespaces, the actual module call is carried out. This

can be seen in Figure 60. The first line is again the declaration of the variable that contains the

path to the output file. The second variable contains the iriPath, which is needed for the

subject map and the predicate-object maps of the RML mapping rules. The variables

inputFileName and iterator are needed within the logical source of the RML mapping

rules. The last line is again the module call within the file:write function, which writes the

resulting RML mapping rules into the declared output-file.

Processing Module

The processing module consists of seven functions that will be explained in this section:

• rdfs:generateTriplesMap

• rdfs:generateLogicalSource

• rdfs:generateSubjectMap

• rdfs:generatePredicateObjectMaps

• rdfs:generatePredicateObjectMapsRules

• rdfs:generatePredicateObjectMapsRelations

• rdfs:generateRecursion

Before implementing the functions, however, namespaces must be also included in this file. Figure

61 shows the namespaces that must be included, in order for the module to work. The first line

defines the namespace of the module, which in this case is the namespaces of RDFS. The

remaining lines contain the namespaces for RDF, RR (R2RML), AIXM and RML.

Figure 60 - RML mapping rules tool - Module call

Figure 61 - RML mapping rules tool - Namespaces of Processing Module

59

After the namespace declaration the first and main function rdfs:generateTriplesMap is

implemented as it is shown in Figure 62. Within this function body the remaining functions are

called, and the results are saved within the defined variables. After the function calls, the return

string is put together, which is composed of the name of the triples map, as well as the logical

source, the subject map and the predicate-object maps.

The next function within the RML mapping rules creation tool is the function

rdfs:generateLogicalSource, which generates the logical source of the triples map. The

contents, as it was already explained in Section 2.4.2, are:

• iterator,

• reference formulation and

• data source

As it is shown in Figure 63, the function gets the variables inputFileName and iterator

passed from rdfs:generateTriplesMap, which were already defined in the call script file. In

the function body the return string is composed of the data source (instance data file), the

reference formulation (XPath) and the iterator.

Figure 62 - RML mapping rules tool - rdfs:generateTriplesMap

Figure 63 - RML mapping rules tool - rdfs:generateLogicalSource

60

Within the function rdfs:generateSubjectMap, the triples map’s subject map is generated,

which corresponds to the subject of an RDF triple. As it is shown in Figure 64, the function body

contains the return string which contains the IRI path and in this case the unique ID of the

respective AirportHeliport.

After the generation of the subject map, the predicate-object maps are created. This happens

within the functions:

• rdfs:generatePredicateObjectMap

• rdfs:generatePredicateObjectMapRules

• rdfs:generatePredicateObjectMapRelations

• rdfs:generateRecursion

In the first function the predicate-object map is generated, which annotates the predicate and

objects to the class (see Section 4.1). Figure 65 shows the function

rdfs:generatePredicateObjectMap and the composed return string that refers to the class

which should annotate the predicates and objects.

Figure 65 - RML mapping rules tool - rdfs:generatePredicateObjectMaps

Figure 64 - RML mapping rules tool - rdfs:generateSubjectMap

61

The function rdfs:generatePredicateObjectMapRules generates the predicates and

objects for all the sub-elements within the main element. This function annotates the values of the

objects with their predicates. As it can be seen in Figure 66 there is a check within the return string.

The reason behind this check is, to filter out the elements with further sub-elements, because

those represent the associations of that main element.

Figure 66 - RML mapping rules tool - rdfs:generatePredicateObjectMapsRules

In order to map associations, the predicate-object maps must be generated with a join. Within the

tool, the generation of the RML mapping rules for the association happens within the functions

rdfs:generatePredicateObjectMapRelations and rdfs:generateRecursion.

Figure 67 shows the function call for the recursive function that creates the predicate-object maps

for the associations. The recursive function is only called when the element the function is currently

looking at has sub-elements.

Figure 67 - RML mapping rules tool - rdfs:generatePredicateObjectMapsRelations

62

Figure 68 shows the function rdfs:generateRecursion. The first part in the function body

contains the recursive exit and thus the generation of the predicate-object map. The second part

of the function body is the recursive descent, which means the function is called until the element

the function is currently looking at has no more sub-elements.

Figure 68 - RML mapping rules tool - rdfs:generateRecursion

63

5.2.2 Adaption of the Tool to Create RML Mapping Rules for Other Instance Data

Within the tool for the creation of the RML mapping rules, the following things need to be adapted,

in order to process or map other schemas with it.

Call Script

To generate RML mapping rules for different instance data, the following parts need to be adapted

within the module call file:

• iriPath = The last part of the value of this variable needs to be changed to the main

element of the new instance data file (see Section 4.2.1 for details).

• inputFileName = The value of this variable needs to be changed to the file that contains

the new instance data, for which the RML mapping rules are to be created.

• iterator = The value of this variable needs to be changed to the element which contains

all the sub-elements with all the data to the main element (see Section 4.2.1 for details).

• db:open = The value of this function value needs to be changed to the new database

name.

Figure 69 highlights the necessary adaptions that were described above.

Processing Module

Within the processing module file nothing needs to be adapted, as this module already works

generically.

Figure 69 - RML mapping rules - Adaptions within Module Call file

64

6 Conclusion

This thesis may serve as the basis for further development regarding the transformation and

mapping procedures for representing AIXM and other exchange models using RDF(S). The goal

of the thesis was to map both AIXM schema and instance data to RDF(S). Therefore, two XQuery

modules were created: (i) an XQuery module that transforms the XMI of the AIXM UML class

diagram to RDFS, and (ii) an XQuery module that generates the RML mapping rules for a given

set of AIXM instance data. Since little information was available in the literature on this subject,

the automation of the procedures was done from scratch. Only for the transformation of the

instance data, the RMLMapper was used to generate RDF statements from the automatically

created RML mapping rules. In addition, the thesis also shows how to adapt the automation tools

so that the procedures can be used for other types of aeronautical input data. The implementation

of both tools is not generic but specific to AIXM. A goal of the implementation, however, was to

design the tools in a way that allows easy adaptation to other aeronautical schemas or instance

data. The mapping of the AIXM Temporality Model was not within the scope of this thesis. Future

work may investigate the mapping of the AIXM Temporality Model to RDF(S), e.g., by using AIXM

time slices as the basis for representation of contextualized knowledge graphs [27].

65

7 List of Figures

Figure 1. Simplified AirportHeliport class from the AIXM standard [6] ..11

Figure 2 - UML class diagram of AIXM routes [6] ...13

Figure 3 - Definition of class "Route" in XMI (Excerpt) ..14

Figure 4 - Definition of association between Route and RoutePortion in XMI15

Figure 5 - Code example for RDF triples ..17

Figure 6 - Example of RDF graph [16] ...18

Figure 7 - Code example for RDF/XML [16] ...18

Figure 8 - Code example for RDF/Turtle ..19

Figure 9 - Code example of a triple statement in RDF/Turtle ..19

Figure 10 - Code example of predicate list in RDF/Turtle ...19

Figure 11 - Definition of an RDF Class and Subclass...20

Figure 12 - Code example for RDF/XML class notation ...20

Figure 13 - Code example for RDF/XML property notation ..20

Figure 14 - R2RML concepts [21] ..23

Figure 15 - Code example for a join condition in RML [20] ...25

Figure 16 - RML concepts [21] ...26

Figure 17 - Code example for XML [16] ...27

Figure 18 - Code example for RDFS class ...29

Figure 19 - Code example for the generalization mapping ...30

Figure 20 - Code example for association mapping ...30

Figure 21 - Code example for attributes mapping ..30

Figure 22 - Simplified AIXM UML diagram ...31

Figure 23 - Association between Runway and RunwayClosureMessage32

Figure 24 - XMI representation of the association between Runway and

RunwayClosureMessage ..33

Figure 25 - Generalization example of the simplified AIXM UML diagram34

Figure 26 - XMI representation of generalization relationship between AIXMBasicMessage and

RunwayClosureMessage ..34

Figure 27 - XMI representation of the UML class Runway..35

Figure 28 - RDFS class Runway ..35

Figure 29 - RDFS mapping result RunwayClosureMessage ...36

Figure 30 - RDFS mapping result of the attributes of the class Runway36

https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370682
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370684
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370686
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370687
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370688
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370689
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370691
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370692
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370694
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370695
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370696
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370697
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370698
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370699
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370700
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370701
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370702
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370703
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370704
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370705
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370705
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370705
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370706
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370707
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370707
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370707
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370708
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370710
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370711

66

Figure 31 - RDFS mapping result of the associations of the class Runway37

Figure 32 - Declaration of a triples map ...38

Figure 33 - Declaration of a second triples map ...38

Figure 34 - Definition of the logical source ...38

Figure 35 - Definition of the subject map ..39

Figure 36 - Definition of the predicate-object map ..39

Figure 37 - Definition of associations between triples maps ...40

Figure 38 - XML instance data example ...41

Figure 39 - Prefixes for the RML mapping rules ...42

Figure 40 - Definition of triples map and logical source ..43

Figure 41 - Definition of subject map ..43

Figure 42 - Definition of the predicate-object maps and the join conditions44

Figure 43 - target folder after the successful maven install ...45

Figure 44 - Content of the RMLMapper target folder ..46

Figure 45 - Command line command for running the RMLMapper ...46

Figure 46 - Mapped RDF instance data ...47

Figure 47 - Command line command for running the RMLMapper with defined output file48

Figure 48 - Schema Mapping tool - Module call namespaces ..49

Figure 49 - Schema Mapping tool - Module call ...50

Figure 50 - Schema mapping tool - Namespaces of Process Mapping50

Figure 51 - Schema mapping tool - rdfs:extractRDFSchema ...51

Figure 52 - Schema mapping tool - rdfs:extractUMLElements ..52

Figure 53 - Schema mapping tool - rdfs:extractUMLAttributes53

Figure 54 - Schema mapping tool - rdfs:extractUMLAssociations54

Figure 55 - Schema mapping tool - rdfs:extractUMLDiagrams ..55

Figure 56 - Schema mapping tool - rdfs:extractUMLDiagramElements............................55

Figure 57 - Schema Mapping tool - Adaptions within Module Call file ..56

Figure 58 - Schema Mapping tool - Adaptions within the Processing Module file56

Figure 59 - RML mapping rules tool - Module call namespaces ...57

Figure 60 - RML mapping rules tool - Module call ..58

Figure 61 - RML mapping rules tool - Namespaces of Processing Module58

Figure 62 - RML mapping rules tool - rdfs:generateTriplesMap59

Figure 63 - RML mapping rules tool - rdfs:generateLogicalSource59

https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370712
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370713
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370714
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370715
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370716
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370717
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370718
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370719
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370720
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370721
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370722
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370723
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370724
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370725
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370726
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370727
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370728
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370729
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370730
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370731
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370734
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370737
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370738
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370739
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370740
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370741
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370742
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370743
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370744

67

Figure 64 - RML mapping rules tool - rdfs:generateSubjectMap60

Figure 65 - RML mapping rules tool - rdfs:generatePredicateObjectMaps60

Figure 66 - RML mapping rules tool - rdfs:generatePredicateObjectMapsRules61

Figure 67 - RML mapping rules tool - rdfs:generatePredicateObjectMapsRelations .61

Figure 68 - RML mapping rules tool - rdfs:generateRecursion ...62

Figure 69 - RML mapping rules - Adaptions within Module Call file ..63

https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370745
https://d.docs.live.net/bdfe0cda32b87b39/Dokumente/Masterarbeit_Kaar.docx#_Toc83370750

68

8 List of Tables

Table 1: RDF statements examples [16] ..17

Table 2: RDF/RDF Schema vocabulary [16] ..21

Table 3: Summary of differences between R2RML and RML [20] ..23

Table 4: XML concepts [16] ...28

Table 5: Overview of the mapping rules for UML to RDFS according to [26]29

Table 6: Mapping of UML datatype to RDFS [26] ...31

Table 7: Direction of association ..33

69

9 Bibliography

[1] M. Arblaster, ‘The Air Traffic Management Industry’, in Air Traffic Management, Elsevier
Inc., 2018, pp. 1–8.

[2] M. Arblaster, ‘Operational and Technological Background on Air Traffic Management’, in
Air Traffic Management, Elsevier Inc., 2018, pp. 11–38.

[3] N. A. Stanton and J. Piggott, ‘Situational awareness and safety’, vol. 7535, no. December
2001, pp. 189–204, 2017.

[4] AIXM, ‘AIXM’. [Online]. Available: http://www.aixm.aero/. [Accessed: 03-Jun-2021].

[5] B. Brunk and E. Prorsnicu, ‘Aeronautical Information Exchange Model (AIXM) Exchange
Model goals, requirements and design’, p. 76, 2005.

[6] AIXM, ‘AIXM Model Documentation’. [Online]. Available:
http://aixm.aero/sites/aixm.aero/files/imce/AIXM511HTML/index.html. [Accessed: 20-May-
2021].

[7] A. I. S. Ituational, A. W. F. Oundation, F. O. R. A. Dvancing, and A. U. Aisa, ‘AISA Proposal
– Part B’, vol. 1, 2020.

[8] RMLio, ‘RMLMapper’. [Online]. Available: https://rml.io/. [Accessed: 30-May-2021].

[9] Apache, ‘Apache Jena’. [Online]. Available: https://jena.apache.org/index.html. [Accessed:
30-May-2021].

[10] B. Murphy and E. Porosnico, ‘AIXM 5.1.1 Temporality Model’, pp. 1–30, 2019.

[11] OGC, ‘OGC® Geography Markup Language (GML) — Extended schemas and encoding
rules’, OpenGIS Recomm. Pap., p. 595, 2010.

[12] D. Burggraf, M. Trninic, R. Lake, and L. Rae, Geography Mark-Up Language : Foundation
for the Geo-Web, 1st ed. Hoboken: John Wiley & Sons, 2004.

[13] J. Osis and U. Donins, ‘Unified Modeling Language: A Standard for Designing a Software’,
in Topological UML Modeling, Elsevier, 2017, p. 335.

[14] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. O’Reilly Media, Inc., 2005.

[15] Object Managment Group, ‘Information Technology --- XML Metadata Interchange (XMI)’,
XML Metadata Interchange (XMI) Specification, vol. 2014, no. April. 2011.

[16] K. . Breitmann, M. A. Casanova, and W. Truskowski, Semantic Web: Concepts,
Technologies and Applications. London: Springer-Verlag London Limited, 2007.

[17] S. Decker, P. Mitra, and S. Melnik, ‘Framework for the semantic web: an RDF tutorial’, IEEE
Internet Comput., vol. 4, no. 6, pp. 68–73, 2000.

[18] W3C, ‘RDF’. [Online]. Available: https://www.w3.org/TR/rdf11-concepts/. [Accessed: 26-
Apr-2021].

[19] W3C, ‘RDF 1.1 Turtle’. [Online]. Available: https://www.w3.org/TR/turtle/. [Accessed: 26-
Apr-2021].

[20] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van De Walle,
‘RML: A generic language for integrated RDF mappings of heterogeneous data’, CEUR
Workshop Proc., vol. 1184, 2014.

[21] K. Kyzirakos et al., ‘GeoTriples: Transforming geospatial data into RDF graphs using
R2RML and RML mappings’, J. Web Semant., vol. 52–53, pp. 16–32, 2018.

[22] W3C, ‘XML’. [Online]. Available: https://www.w3.org/TR/xml/. [Accessed: 30-May-2021].

[23] W3C, ‘XQuery’. [Online]. Available: https://www.w3.org/TR/xquery-31/. [Accessed: 30-May-
2021].

[24] G. Goos, J. Hartmanis, and J. Leeuwen, Lecture Notes in Computer Science, vol. 1716.

70

1999.

[25] J. L. Filho and J. L. Braga, ‘UML: Unified Modeling Language’, in Encyclopedia of GIS, no.
December, 2017, pp. 2345–2346.

[26] Q. Tong, F. Zhang, and J. Cheng, ‘Construction of RDF(S) from UML class diagrams’, J.
Comput. Inf. Technol., vol. 22, no. 4, pp. 237–250, 2015.

[27] C. G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger, A. Vennesland, and S. Wilson, ‘The
case for contextualized knowledge graphs in air traffic management’, CEUR Workshop
Proc., vol. 2317, 2018.

