

D4.2 Specification of
Evolutionary Algorithm

 Deliverable ID: D4.2

 Dissemination Level: PU

 Project Acronym: SlotMachine

 Grant: 890456
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-27-2019 Future ATM Architecture
 Consortium Coordinator: Frequentis
 Edition Date: 15 January 2022
 Edition: 01.00.01
 Template Edition: 02.00.03

EXPLORATORY RESEARCH
Ref. Ares(2022)311643 - 15/01/2022

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 2

SlotMachine
A PRIVACY-PRESERVING MARKETPLACE FOR SLOT MANAGEMENT

This Deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 890456 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

The SlotMachine system employs an evolutionary algorithm in conjunction with multiparty
computation to optimize flight lists in a privacy-preserving way. This document describes the Heuristic
Optimizer component of the SlotMachine system, which realizes the evolutionary algorithm for finding
solutions to the SlotMachine flight prioritization problem. The Heuristic Optimizer provides an
extendable framework allowing to plug in different implementations of evolutionary algorithms for
optimization of flight lists; this document describes a configurable genetic algorithm implementation.
Experiments conducted with generated synthetic data for different scenarios serve to evaluate the
implementation of the Heuristic Optimizer.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 3

Table of Contents

Abstract ... 2

1 Introduction ... 6

 Purpose of the document... 6

 Scope .. 6

 Intended readership .. 6

 Background ... 6

 Structure of the document and relation to other deliverables ... 6

2 Heuristic Optimizer: Overview .. 8

 SlotMachine Flight Prioritization Problem .. 8

 Evolutionary Optimization Algorithm ... 9

 Heuristic Optimizer and Privacy Engine .. 11

3 Framework .. 12

 Structure ... 12

 Creating and Initializing an Optimization .. 14

 Running an Optimization ... 15

4 Genetic Algorithm .. 16

 Parameters .. 16

 Implementation... 19
4.2.1 Structure ... 19
4.2.2 Creating and Initializing an Optimization .. 21
4.2.3 Running an Optimization ... 22

5 Fitness Function ... 24

6 Evaluation ... 26

 Relation to Requirements .. 26

 Experiments .. 30
6.2.1 Setup ... 30
6.2.2 Results ... 32

7 Conclusions .. 45

8 References ... 46

Appendix A Third-Party Libraries ... 48

List of Tables
Table 1. Parameters for the genetic algorithm ... 17

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 4

Table 2. Requirements from D2.1 and their implications on the design of the Heuristic Optimizer ... 26

Table 3. Cases used in experiments .. 31

Table 4. Genetic algorithm configurations used in experiments .. 31

Table 5. List of third-party libraries ... 48

List of Figures
Figure 1. The SlotMachine flight prioritization problem as an unbalanced assignment problem 8

Figure 2. Principle of the iterative optimization process of a genetic algorithm 10

Figure 3. Principle of the iterative optimization algorithm with ranked population and fitness
estimation ... 11

Figure 4. UML class diagram for optimization runs in the Heuristic Optimizer component 13

Figure 5. UML sequence diagram of the creation and initialization of an optimization run 14

Figure 6. UML sequence diagram for starting an optimization run and retrieving the results 15

Figure 7. UML class diagram for initiating and running optimizations using the Jenetics framework . 20

Figure 8. UML sequence diagram of the creation of an optimization run using the Jenetics framework
 ... 21

Figure 9. UML sequence diagram of an optimization run using the Jenetics framework..................... 22

Figure 10. UML sequence diagram of batch evaluation of a population of flight lists 23

Figure 11. Distribution of fitness values for different fitness estimators ... 25

Figure 12. Average/best fitness over five runs of various genetic algorithm configurations using no
fitness estimator, i.e., evaluation through computation of absolute fitness. 33

Figure 13. Average/best fitness over five runs of various genetic algorithm configurations using a linear
fitness estimator when maximum fitness of a population and a ranking of individuals within the
population is known. ... 34

Figure 14. Average/best fitness over five runs of various genetic algorithm configurations using a
logarithmic fitness estimator when maximum fitness of a population and a ranking of individuals within
the population is known. ... 35

Figure 15. Average/best fitness over five runs of various genetic algorithm configurations using a
sigmoid fitness estimator when maximum fitness of a population and a ranking of individuals within
the population is known. ... 36

Figure 16. Evaluated fitness distribution in different generations of J1 applied to Case 9 using no
estimator ... 37

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 5

Figure 17. Evaluated fitness distribution in different generations of J1 applied to Case 20 using no
estimator ... 38

Figure 18. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
9 using linear estimator ... 39

Figure 19. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
20 using linear estimator ... 40

Figure 20. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
9 using logarithmic estimator .. 41

Figure 21. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
20 using logarithmic estimator.. 42

Figure 22. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
9 using sigmoid estimator ... 43

Figure 23. Estimated and evaluated fitness distributions in different generations of J1 applied to Case
20 using sigmoid estimator ... 44

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 6

1 Introduction

 Purpose of the document

The purpose of this document is to specify the Heuristic Optimizer component of the SlotMachine
system, which is responsible for optimizing flight lists given the airspace users’ preferences. To this
end, the Heuristic Optimizer employs an evolutionary algorithm. This document describes, on the one
hand, the general framework of the Heuristic Optimizer component, which allows to plug in different
implementations of evolutionary algorithms. On the other hand, this document also describes a
concrete implementation of a genetic algorithm that can be used to optimize flight lists.

 Scope

This document describes an extensible implementation of a framework for running optimizations of
flight lists in the SlotMachine project. The implementation will serve as the basis for further
development and can be integrated into the SlotMachine system.

 Intended readership

The SlotMachine project team will use this document as reference for further development effort
regarding the integration of the SlotMachine system’s individual components. The experimental
evaluation presented in this document will serve as the basis for decisions regarding further
development effort in the area of performance tuning. Beyond the project, researchers and
practitioners find a novel approach in this document for solving an optimization problem in a privacy-
preserving way using evolutionary algorithms.

 Background

The Heuristic Optimizer component described in this document is an extension of the non-privacy-
preserving variant described in D4.1 – Report on State of the Art of Relevant Concepts [1]. The
presented implementation of the Heuristic Optimizer builds on related work on evolutionary
optimization algorithms [2], [3] in general and employs an open-source framework for the
implementation of genetic algorithms in Java [4].

 Structure of the document and relation to other deliverables

The general structure of this document is as follows.

• Chapter 1 (this section) provides a general idea of the entire document. It includes the purpose,
readership, inputs from other projects, component purpose and high-level overview and
acronyms used in the document.

• Chapter 2 characterizes the optimization problem solved by the Heuristic Optimizer
component and explains the intuition of the privacy-preserving optimization process.

• Chapter 3 describes the Heuristic Optimizer’s general framework, which was designed having
the goal of extensibility in mind.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 7

• Chapter 4 describes the genetic algorithm implementation which was plugged into the
Heuristic Optimizer’s general framework; this implementation serves as the basis for
experimentation and will form the basis for further development.

• Chapter 5 discusses the Heuristic Optimizer’s approach to evaluate the found solutions using
the information provided by the Privacy Engine.

• Chapter 6 examines the Heuristic Optimizer’s relation to the requirements and presents the
results of experiments using generated synthetic data for different scenarios.

• Chapter 7 concludes the document.

• Chapter 8 lists the references.

• Appendix A lists the third-party libraries used in the implementation.

This document relates to the other deliverables of the SlotMachine project as follows.

• D2.1 – Requirements Specification [5]: The requirements are the foundation for the design and
implementation of the Heuristic Optimizer described in this document; this document refers
to the requirements in D2.1.

• D2.2 – System Design Document [6]: The system design document describes the interfaces of
the Heuristic Optimizer and details the interactions of the Heuristic Optimizer with other
components.

• D2.3 – Business Concepts [7]: More details on operational background, deployment options,
and market mechanisms can be found in D3.2.

• D3.2 – Specification of the Privacy Engine component [8]: The Privacy Engine and related
components (MPC Nodes and Credit Handling) are described in further detail in D3.2. The
Heuristic Optimizer invokes the Privacy Engine for evaluating the found solutions.

• D4.1 – Report on State of the Art of Relevant Concepts [9]: An overview of genetic algorithms
and local search can be found in D4.1. A non-privacy-preserving implementation of the
Heuristic Optimizer was used for experiments to determine the suitability of different types of
evolutionary algorithms for the SlotMachine project. The cases from the experiments in D4.1
were the basis for the experiments described in this document using the extended
implementation of the Heuristic Optimizer.

• D5.1 – SlotMachine Platform Demonstrator [10]: The platform demonstrator will integrate the
individual components for evaluation.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 8

2 Heuristic Optimizer: Overview

In the following, we first characterize the SlotMachine flight prioritization problem that the Heuristic
Optimizer solves. We then explain the principle of the Heuristic Optimizer’s evolutionary algorithm
driving the optimization process before explaining the relation between the Heuristic Optimizer and
the Privacy Engine component of the SlotMachine system.

 SlotMachine Flight Prioritization Problem

From an economic perspective (see also D2.3 – Business Concepts [7]) the SlotMachine system aims
to maximize the overall utility of airspace users. In order to facilitate optimization of flight lists, each
airspace user may provide a valuation for each slot and flight.

Generally speaking, the SlotMachine flight prioritization problem is an assignment problem that is
possibly unbalanced [11]. The problem to be solved is to find a mapping between two sets of objects
– flights and slots (see Figure 1) – minimizing overall costs or maximizing the overall benefit given a
cost or a benefit matrix, respectively. If the goal is to minimize costs or maximize benefits of the
assignment, the problem can be considered a single-objective assignment problem. The problem is
unbalanced if the number of elements differs between the sets to be mapped; in the SlotMachine
flight prioritization problem there may be possibly more slots than flights.

Flights Slots

1

2

3
4

12

3

4

5

Figure 1. The SlotMachine flight prioritization problem as an unbalanced assignment problem

Formally, given a set F of flights and a set S of slots, the objective of the optimization is to maximize
the overall utility U given a utility function u and an assignment function m of flights to slots as follows.

𝑈 = ∑ ∑ 𝑢𝑓 𝑠 ∙ 𝑚𝑓 𝑠

𝑠 ∈ 𝑆𝑓 ∈ 𝐹

The assignment function m defines for each combination of flight and slot whether the flight is assigned
to that particular slot.

∀ 𝑓 ∈ 𝐹 ∶ ∀ 𝑠 ∈ 𝑆 ∶ 𝑚𝑓 𝑠 = {
1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 9

The utility of a slot for a flight is a numeric value. The utility function u is often expressed in form of a
utility matrix.

[

𝑢1 1 ⋯ 𝑢1 𝑠

⋮ ⋱ ⋮
𝑢𝑓 1 ⋯ 𝑢𝑓 𝑠

]

Each row in the utility matrix specifies the utilities of the different slots for a particular flight, with each
column representing a different slot. Each entry 𝑢𝑓 𝑠 in the utility matrix thus defines the utility of a

slot s for a flight f. In this representation, the set of flights F and the set of slots S are assumed to be
ordered. For example, the entry 𝑢1 5 of the utility matrix u then defines the utility of the 5th slot in S
for the 1st flight in F. We also refer to the utility matrix as weight map or weight table.

We can also define the following constraints for the problem.

• Each flight must be assigned to exactly one slot, i.e., ∀ 𝑓 ∈ 𝐹 ∶ ∃! 𝑠 ∈ 𝑆 ∶ 𝑚𝑓 𝑠 = 1 .

Alternatively, the sum of the values of 𝑚𝑓 𝑠 for every flight f must be 1, i.e., ∀ 𝑓 ∈ 𝐹 ∶

 ∑ 𝑚𝑓 𝑠 = 1𝑠 ∈ 𝑆 .

• A flight must not be assigned to a slot with a time that is before the flight’s originally scheduled
time, i.e.,

∀ 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆 ∶ (𝑚𝑓 𝑠 = 1) ⇒ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑇𝑖𝑚𝑒(𝑓) ≤ 𝑡𝑖𝑚𝑒(𝑠)

where the function 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑇𝑖𝑚𝑒 denotes the originally scheduled time of a flight, the
function 𝑡𝑖𝑚𝑒 denotes the time of a slot, and ≤ is the total order of times; we say 𝑡 ≤ 𝑡′ if and
only if time t is before or equal to time t’.

The Heuristic Optimizer component described in this document solves the SlotMachine flight
prioritization problem as a single-objective, possibly unbalanced assignment problem with utility
maximization. Future work may, however, extend the Heuristic Optimizer to work with multi-objective
optimization, particularly in relation to more elaborate market mechanisms.

 Evolutionary Optimization Algorithm

A number of deterministic optimization algorithms have been proposed to solve the single-objective
assignment problem. For example, the Hungarian method [12] [13] – also known as Hungarian
algorithm, Kuhn–Munkres algorithm, or Munkres assignment algorithm – is arguably the most well-
known optimization algorithm for the single-objective assignment problem. The Hungarian algorithm
is of polynomial time [14] and a variant of the algorithm with a complexity of 𝑂(𝑛3) can be
devised [15], which would allow for efficiently solving the SlotMachine flight prioritization problem in
a non-privacy-preserving setting.

In a privacy-preserving setting, a deterministic optimization algorithm for the single-objective
assignment problem would have to be implemented entirely using multiparty computation.
Preliminary results suggest that this approach is impractical for solving the SlotMachine flight
prioritization problem (see D3.2 – Specification of the Privacy Engine Component [8]). Furthermore,
when moving away from single-objective, purely utility-based optimization to a more complex multi-
objective optimization, which may be necessary for realizing more complex market mechanisms (see

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 10

D2.3 – Business Concepts [7]), the complexity of a deterministic algorithm would increase even in a
non-privacy-preserving setting, let alone the privacy-preserving setting. Thus, the choice for an
evolutionary algorithm also provides additional flexibility for future development.

For solving the SlotMachine flight prioritization problem in a privacy-preserving way we propose to
employ an evolutionary algorithm, which allows to separate the finding of solutions to the problem,
i.e., flight lists, from the evaluation of the fitness, i.e., the overall utility, of the solutions. Figure 2
illustrates the principle of the optimization using a genetic algorithm, which is a type of evolutionary
algorithm. The genetic algorithm starts with a population of solutions to the optimization problem, in
this case flight lists, e.g., Flight A is assigned to the 1st slot, Flight B is assigned to the 2nd slot, and so
on. The population is then evaluated, each individual is assigned a fitness value – the solution’s overall
utility. Through recombination and mutation of the evaluated solutions a new generation of solutions
is created, replacing the previous population, and the cycle starts again. The genetic algorithm can be
stopped at any time. In practice, different termination criteria can be specified, e.g., a time limit or a
certain number of generations without increase in maximum fitness of the found solutions.

.

.

.

A

1

B

2

C

3

D

4

E

5

F

6

B

1

A

2

D

3

C

4

F

5

E

6
.
.
.

F

1

E

2

C

3

D

4

A

5

B

6

A B E F

B

1

A

2

D

3

C

4

F

5

E

6

C D

Population

Recombine and Mutate

A

1

B

2

C

3

D

4

E

5

F

6

B

1

A

2

D

3

C

4

F

5

E

6
.
.
.

F

1

E

2

C

3

D

4

A

5

B

6

Evaluated Population

Evaluate

Fitness: 120 000

Fitness: 240 000

Fitness: -12 000

Figure 2. Principle of the iterative optimization process of a genetic algorithm

The Heuristic Optimizer is flexible regarding the employed evolutionary algorithm. In the current
version the Heuristic Optimizer employs a genetic algorithm for running optimizations in a privacy-
preserving way. Implementations of other types of evolutionary/heuristic optimization algorithms or
possibly more efficient implementations of the genetic algorithm, however, may be easily plugged into
the general framework of the Heuristic Optimizer.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 11

 Heuristic Optimizer and Privacy Engine

The Heuristic Optimizer is designed to work together with the SlotMachine system’s Privacy Engine
component, which takes over the evaluation of the individuals in the population of the evolutionary
algorithm. The Privacy Engine employs multiparty computation over encrypted weight maps to
determine the fitness of the solutions in a privacy-preserving manner (see D3.2 – Specification of the
Privacy Engine Component [8]). In order to not leak too much information, the Privacy Engine does not
disclose individual fitness values of the entire population to the Heuristic Optimizer. Rather, the Privacy
Engine ranks the individuals of a population by fitness value and returns only the maximum fitness
value of the population. In this case, an honest-but-curious platform provider may not simply infer the
airspace users’ preferences from the fitness values of the different populations. The cost for preserving
the confidentiality of the inputs may, however, be reduced performance of the optimization algorithm
in terms of achieved fitness of the found solution.

Figure 3 illustrates the principle of running the evolutionary optimization algorithm in connection with
the Privacy Engine. In each iteration step, a population of candidate solutions (flight lists) is evaluated
– which in privacy-preserving mode is taken over by the Privacy Engine. The result of the evaluation is
a ranked list of individuals along with the maximum fitness in the population, which is disclosed to the
Heuristic Optimizer. The Heuristic Optimizer then estimates the fitness values of the individuals using
a specific estimation function; the estimation function used by the Heuristic Optimizer can be
configured. The fitness estimates are the basis for recombination and mutation of the solutions, which
produce the next generation of the population.

.

.

.

A

1

B

2

C

3

D

4

E

5

F

6

B

1

A

2

D

3

C

4

F

5

E

6
.
.
.

F

1

E

2

C

3

D

4

A

5

B

6

A B E F

B

1

A

2

D

3

C

4

F

5

E

6

C D

Population

Recombine and Mutate

B

1

A

2

D

3

C

4

F

5

E

6

A

1

B

2

C

3

D

4

E

5

F

6
.
.
.

F

1

E

2

C

3

D

4

A

5

B

6

Ranked Population

Evaluate

Fitness: 240 0001.)

2.)

70.)

B

1

A

2

D

3

C

4

F

5

E

6

A

1

B

2

C

3

D

4

E

5

F

6
.
.
.

F

1

E

2

C

3

D

4

A

5

B

6

Estimated Population

Fitness: 240 0001.)

2.)

70.)

Fitness: 200 000

Fitness: -240 000

Estimate

Figure 3. Principle of the iterative optimization algorithm with ranked population and fitness estimation

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 12

3 Framework

In this chapter we describe the general framework of the Heuristic Optimizer. The Heuristic Optimizer’s
implementation focuses on flexibility and extensibility regarding the type of (evolutionary) algorithm
used to conduct the optimization of flight lists. The general framework of the Heuristic Optimizer can
be used with different types of (evolutionary) algorithms. We refer to Chapter 4 for a concrete
implementation of optimization runs using a genetic algorithm.

 Structure

Figure 4 shows the main classes that make up the general framework of the Heuristic Optimizer. The
central class is the OptimizationService, the methods of which are invoked by the
OptimizationEndpoint, which realizes the REST interface to be accessed by the Controller (see
D2.2 – System Design Document [6]). The OptimizationService is a Spring service component. The
OptimizationEndpoint class is implemented as a Spring REST endpoint; Spring is an open-source
framework for the development of web applications1.

The Heuristic Optimizer is a framework that allows to easily plug in modules for different
implementations of (evolutionary) algorithms to solve the SlotMachine flight prioritization problem. In
particular, the Heuristic Optimizer employs the abstract factory design pattern [16, p. 87ff] to provide
increased flexibility regarding the used optimization algorithm. The OptimizationService class
refers to the abstract classes Optimization and OptimizationFactory. Which concrete
implementations of these abstract classes are used depends on the configuration of the optimization
run – more specifically, the framework parameter’s value in the JSON configuration passed to the
REST endpoint during creation and initialization of the optimization run.

The domain model consists of the classes Flight and Slot, which are used across different
implementations of evolutionary algorithms to characterize the result of the optimization – a mapping
of flights to slots. The different implementations may have separate internal representations that are
used during optimization, e.g., the genetic algorithm employs a Problem class and an encoding during
the optimization runs.

An OptimizationConfiguration defines the characteristics of the optimization. The
OptimizationConfiguration class is abstract, each module implementing an evolutionary
algorithm provides its own concrete implementation of OptimizationConfiguration. The
OptimizationConfiguration class itself contains a Map<String, Object> to represent
parameters. Concrete implementations may provide convenience methods to write parameters
specific to the evolutionary algorithm into the map.

The abstract FitnessEstimator is required for the privacy-preserving mode when the Privacy
Engine is used to evaluate the population (see Chapter 5).

1 https://spring.io/

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 13

Figure 4. UML class diagram for optimization runs in the Heuristic Optimizer component

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 14

 Creating and Initializing an Optimization

Figure 5 illustrates the internal sequence of the creation and initialization of an optimization within
the Heuristic Optimizer. To create and initialize an optimization, the Controller submits the
corresponding request to the Heuristic Optimizer’s REST endpoint (OptimizationEndpoint), which
is implemented using Spring Boot; we refer to D2.2 – System Design Document [6] for a specification
of the REST interface. The Heuristic Optimizer’s REST endpoint then calls the
OptimizationService.

Figure 5. UML sequence diagram of the creation and initialization of an optimization run

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 15

 Running an Optimization

Figure 6 illustrates the internal sequence for asynchronously running an optimization and retrieving
the results. The optimization can be run in a separate thread.

Figure 6. UML sequence diagram for starting an optimization run and retrieving the results

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 16

4 Genetic Algorithm

The Heuristic Optimizer’s general framework allows to plug in different implementations of
evolutionary algorithms to actually conduct the optimization. In order for the Heuristic Optimizer to
work there must be at least one such implementation provided. In the following, we describe a genetic
algorithm implementation employing the Jenetics framework2.

 Parameters

The genetic algorithm’s behaviour is determined by different parameters that can be set in an
optimization run’s configuration upon creation and initialization of the optimization run. Consider the
following example of an optimization run’s configuration in JSON notation.

{
 "optId": "237dd935-bfd7-470a-998e-cfcb3be09a18",
 "flights": […],
 "slots": […],
 "optimizationMode": "PRIVACY_PRESERVING",
 "fitnessEstimator": "LOGARITHMIC",
 "optimizationFramework": "JENETICS",
 "parameters": {
 "populationSize": 500,
 "maximalPhenotypeAge": 80,
 "offspringFraction": 0.7,
 "crossover": "PARTIALLY_MATCHED_CROSSOVER",
 "crossoverAlterProbability": 0.35,
 "survivorsSelector": "TOURNAMENT_SELECTOR",
 "survivorsSelectorParameter": 50,
 "mutator": "SWAP_MUTATOR",
 "mutatorAlterProbability": 0.15,
 "offspringSelector": "TOURNAMENT_SELECTOR",
 "offspringSelectorParameter": 50,
 "terminationConditions": {
 "BY_EXECUTION_TIME": 10
 },
 }

}

The configuration indicates that the Jenetics framework, i.e., the genetic algorithm module of the
Heuristic Optimizer, shall be used for running the optimization in privacy-preserving mode using the
logarithmic fitness estimator (see Chapter 5). The parameters array differs between different
implementations of evolutionary algorithm; the example shows the parameters for the Jenetics
implementation of a genetic algorithm.

2 https://jenetics.io/

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 17

Table 1 describes the parameters of the Jenetics implementation of a genetic algorithm. The
parameters are derived from the parameters that are passed to the various classes provided by the
Jenetics framework; we refer to the Jenetics manual for further information [4].

Table 1. Parameters for the genetic algorithm

Parameter Description Type

populationSize The number of
individuals considered in
each iteration step.

(Positive) Integer

maximalPhenotypeAge The maximum number
of generations an
individual is allowed to
live

(Positive) Integer

offspringFraction The fraction of the
offspring that is kept in
the evolutionary
process.

Number in the interval [0, 1[

crossover The recombination
operator used to derive
new solutions from the
existing population.

String/Enum; in the current
implementation only the option
“PARTIALLY_MATCHED_CROSSOVER”
is supported.

crossoverAlterProbability The probability that an
individual is selected for
recombination.

Number in the interval [0, 1[

survivorsSelector The selector that serves
to select the survivors of
a generation.

String/Enum; the following options are
supported: “BOLTZMANN_SELECTOR”,
“EXPONENTIAL_RANK_SELECTOR”,
“LINEAR_RANK_SELECTOR”,
“ROULETTE_WHEEL_SELECTOR”,
“STOCHASTIC_UNIVERSAL_SELECTOR”,
“TOURNAMENT_SELECTOR”,
“TRUNCATION_SELECTOR”.

survivorsSelectorParameter The parameter passed
to the chosen survivors
selector.

Object; depending on the chosen
offspring selector, the parameter is
either an integer or a double value
with a different meaning. Some
selectors do not require a parameter.

mutator The alterer used to
mutate individuals in a
population.

String/Enum; In the current
implementation only the option
“SWAP_MUTATOR” is supported.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 18

Parameter Description Type

mutatorAlterProbability The probability that an
individual is selected for
mutation.

Number in the interval [0, 1[

offspringSelector The selector that serves
to select the offspring
that is kept in the
evolutionary process.

String/Enum; the following options are
supported: “BOLTZMANN_SELECTOR”,
“EXPONENTIAL_RANK_SELECTOR”,
“LINEAR_RANK_SELECTOR”,
“ROULETTE_WHEEL_SELECTOR”,
“STOCHASTIC_UNIVERSAL_SELECTOR”,
“TOURNAMENT_SELECTOR”,
“TRUNCATION_SELECTOR”.

offspringSelectorParameter The parameter passed
to the chosen offspring
selector.

Object; depending on the chosen
offspring selector, the parameter is
either an integer or a double value
with a different meaning. Some
selectors do not require a parameter.

terminationConditions The conditions that
determine when the
genetic algorithm stops.

Map<String/Enum, Object>; as key,
the following values are supported:
“BY_EXECUTION_TIME”,
“WORST_FITNESS”,
“BY_FITNESS_THRESHOLD”,
“BY_STEADY_FITNESS”,
“BY_FIXED_GENERATION”,
“BY_POPULATION_CONVERGENCE”,
“BY_FITNESS_CONVERGENCE”. The
type of the value depends on the
selected termination condition and
represents the parameter for the
termination condition.

The only recombination operator currently supported by the Heuristic Optimizer’s genetic algorithm
module (not the Jenetics framework, which provides more implementations) is the partially matched
crossover (PMX), which achieves good performance for the assignment problem. The only mutator
currently supported by the module (again, Jenetics provides more) is the swap mutator. Regarding the
choice of survivors and offspring selectors, the tournament selector is “often used in practice because
of its lack of stochastic noise” and due to being “independent to the scaling of the genetic algorithm
fitness function” [4, p. 13]. In preliminary experiments, some of the other selectors showed minimally
better results on a first set of test data we employed for gauging the settings. In our experiments,
however, we then focused on the tournament selector.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 19

 Implementation

We use the Jenetics framework to implement a genetic algorithm for the SlotMachine flight
prioritization problem. Jenetics is a framework that facilitates the implementation of genetic
algorithms. The Jenetics framework provides efficient encodings of common optimization problems
and implements the most common recombination operators as well as selectors. The Jenetics
framework’s flexibility would also allow for the easy extension with new representations,
recombination operators, and selectors in the future if necessary for improving performance of the
SlotMachine system.

4.2.1 Structure

Figure 7 illustrates the structure of the Heuristic Optimizer’s genetic algorithm module. The
JeneticsOptimization class is an implementation of the abstract Optimization class using the
Jenetics framework. The JeneticsOptimizationFactory, which is a specialization of the abstract
OptimizationFactory class, creates an instance of JeneticsOptimization. The
JeneticsOptimization class references a JeneticsOptimizationConfiguration, which is a
specialization of OptimizationConfiguration with methods for setting the parameters of the
genetic algorithm (see Section 4.1). The JeneticsOptimizationConfiguration determines how
the Heuristic Optimizer runs the genetic algorithm to find solutions to the optimization problem.
Internally, JeneticsOptimizationConfiguration employs a string–object map for storing the
parameter values. This map can be passed to the create method of the OptimizationFactory
class upon creation of the JeneticsOptimization instance.

The JeneticsOptimization’s run method employs a genetic algorithm to solve a
SlotConfigurationProblem – an implementation of the Jenetics framework’s Problem interface.
An implementation of Problem comprises a definition of a fitness function and a codec. In case of the
Heuristic Optimizer, the fitness function is not used in privacy-preserving mode (although the fitness
function is used in non-privacy-preserving mode). The codec of the SlotConfigurationProblem
corresponds to the Jenetics framework’s built-in mapping codec (Codec.ofMapping), which handles
transformations between an efficient encoding of a flight list used by the genetic algorithm and the
more natural representation as a mapping of flights to slots (Map<Flight, Slot>).

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 20

Figure 7. UML class diagram for initiating and running optimizations using the Jenetics framework

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 21

4.2.2 Creating and Initializing an Optimization

Figure 8 illustrates the internal sequence of creating and initializing a JeneticsOptimization run.
The JeneticsOptimizationFactory initializes the optimization with the flights and slots as well
as a configuration, setting the parameters of the optimization specified in the optimization run’s
configuration. Note that the computeWeightMap method of the Flight class is only invoked in case
of non-privacy-preserving optimization runs.

Figure 8. UML sequence diagram of the creation of an optimization run using the Jenetics framework

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 22

4.2.3 Running an Optimization

Figure 9 illustrates the internal sequence of running a JeneticsOptimization. First, the
JeneticsOptimization obtains an initial population of flight lists as input for the genetic algorithm.
The JeneticsOptimizationConfiguration returns the initial population for the genetic
algorithm. The initial population is chosen by assigning the flights to the available slots in the order of
their originally scheduled time and then swapping neighbouring flights to obtain different flight lists.
The flight lists are represented as mappings from flights to slots, which are encoded using the encode
function of the SlotAllocationProblem’s codec. The JeneticsOptimization run then initiales
the optimization run by building a Jenetics Engine instance with a BatchEvaluator instance as well
as the SlotAllocationProblem’s encoding and constraint.

Figure 9. UML sequence diagram of an optimization run using the Jenetics framework

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 23

Once started, the Jenetics EvolutionStream obtained via the engine continues until one of the
termination conditions is met. In addition to the termination conditions specified via the optimization
configuration, another termination condition is whether the thread of the optimization run has been
interrupted. That way, the optimization run can be aborted via the REST interface at any time and will
still terminate properly.

Figure 10. UML sequence diagram of batch evaluation of a population of flight lists

The Jenetics framework allows to implement a custom Evaluator class that takes over the evaluation
of a population and can be passed to the engine. Figure 10 illustrates the internal sequence of
evaluating a population using the BatchEvaluator class. The Jenetics evolution stream invokes the
BatchEvaluator’s eval method for every generation. The eval method calls the
PrivacyEngineService’s computePopulationOrder method, which establishes the connection
to the Privacy Engine’s REST interface. The eval method then calls the concrete FitnessEstimator
implementation indicated by the configuration to obtain a distribution of fitness values, which serves
to assign each individual a fitness value in the privacy-preserving setting. After evaluation of the
population, the optimization’s intermediate results and statistics are updated, which allows to obtain
intermediate results and statistics at any time during the run via the REST interface.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 24

5 Fitness Function

A central component of a genetic algorithm is the fitness function, which allows to evaluate the
individuals of a population of candidate solutions to an optimization problem. In SlotMachine, the
privacy-preserving computation of the fitness of individuals requires a peculiar approach to
implementing the fitness function for the employed evolutionary algorithm. In order to not disclose
too much information about airspace users’ preferences, the Privacy Engine that computes the fitness
values does not return an absolute fitness value for every individual in a population. Rather, the Privacy
Engine returns the ranks of individuals within a population along with the maximum fitness value in
the population. When such relative fitness values are available to the Heuristic Optimizer, a fitness
estimator is used to obtain an approximate fitness value for each flight list.

If the Heuristic Optimizer runs in privacy-preserving mode, the Heuristic Optimizer receives from the
Privacy Engine only the rank of each solution within a population as well as the maximum fitness value
within that population. The Heuristic Optimizer then uses a fitness estimator to obtain an approximate
fitness value for each flight list in a population. Different approaches may be used to estimate the
fitness of a flight list when given only the maximum fitness of the population and the rank of the flight
list within the population. The Heuristic Optimizer provides implementations of linear, logarithmic, and
sigmoid estimators but the architecture allows for easily extending the family of fitness estimators. In
the following we briefly explain the intuition behind the provided implementations.

A fitness estimator takes the population size and the maximum/minimum fitness as input and returns
an array of the length of the population size as output. The array contains fitness values, which are
ordered from highest to lowest. The distribution of the values follows a linear, logarithmic, or sigmoid
function, depending on the type of fitness estimator used. In the current implementation, when
estimating fitness values, the minimum fitness is assumed to be equal to twice the absolute value of
the maximum fitness subtracted from the maximum fitness. Figure 11 shows example distributions of
fitness values estimated using the implemented fitness estimators – linear fitness estimator,
logarithmic fitness estimator, and sigmoid fitness estimator – with a population size of 500 as well as
a maximum fitness of 540 000 and a minimum fitness of -540 000. The vertical axis shows the fitness
value. The horizontal axis shows the different positions/ranks within a population. The diagram thus
plots the estimated fitness of the ith individual in a population ranked by fitness value.

The use of a fitness estimator represents a trade-off between information privacy and the quality of
the result of the optimization algorithm. If absolute fitness values were returned by the Privacy Engine
then it would be relatively easy to infer the confidential preferences submitted by the airspace users.
Our experiments, however, suggest that the use of the fitness estimator does not have a considerable
negative impact on the quality of the result of the optimization algorithm (see Section 6.2). The
estimator that most closely resembles the real distribution seems to be the logarithmic estimator,
although here further research may lead to improved implementations of fitness estimators.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 25

Figure 11. Distribution of fitness values for different fitness estimators

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

Es
ti

m
at

ed
 F

it
n

es
s

Individual

Linear Logarithmic Sigmoid

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 26

6 Evaluation

In this chapter we evaluate the implementation of the Heuristic Optimizer. First, we look at the
implementation’s relation to the requirements. We then look at the results of experiments conducted
using the Heuristic Optimizer.

 Relation to Requirements

In the following we discuss the design and implementation decisions regarding the Heuristic Optimizer
in relation to the SlotMachine requirements identified in D2.1 – Requirements Specification [5]. During
the design and implementation of the Heuristic Optimizer, we discovered also that some functional
requirements should be adapted.

Table 2. Requirements from D2.1 and their implications on the design of the Heuristic Optimizer

Req. Description Design Implications

perf_2 The solution shall support handling at least
MIN_FLIGHT_NUMBER flights per flight
prioritization session.

Necessary requirement as you need at least
two flights to swap.

We conducted experiments with different
scenarios involving up to 100 flights (see
D4.1 and Section 6.2). The results of these
experiments suggest good feasibility of a
SlotMachine flight prioritization with 100
flights. The result of those experiments, but
also informal experiments during
development, suggest good feasibility of
optimization runs with even more flights
since our experiments were conducted
using a run time of up to 10 seconds only. In
practice, even with the overhead of
encryption, we expect considerably more
time for conducting an individual
optimization run.

perf_3 The found flight prioritization solutions shall
be MIN_EFFICIENCY % more efficient than
the existing flight list provided by the
Network Manager in terms of the
preferences submitted by the airspace
users.

The SlotMachine system should provide a
gain with respect to the existing systems in
place, otherwise it would not be needed. The
gain can be measured by comparing the
overall utility of the baseline flight list with
the flight list found by the SlotMachine using

From the experiments with generated test
data according to different scenarios (see
Section 6.2 and D4.1 – State of the Art of
Relevant Concepts) we know that the
heuristic optimization finds solutions close
to the optimum found by the non-
deterministic optimization algorithm.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 27

Req. Description Design Implications

the preferences (utilities of slots) submitted
by the airspace users.

perf_4 A flight prioritization session should last at
most MAX_SESSION_DURATION minutes.

Necessary requirement due to the
synchronization process with the
airport/airspace users, which takes some
time.

The Heuristic Optimizer allows to specify a
time limit for an optimization run. In our
experiments using the non-privacy-
preserving mode, we ran optimizations with
a fixed time of 10 seconds, which already
yielded good results with respect to the
deterministic optimum. Even with the
overhead of encryption and privacy-
preserving computation, a time limit
imposed by operational constraints will
likely not be a problem for running
optimizations.

perf_6 The Heuristic Optimizer shall finish the
optimization after reaching a specified
threshold in terms of fitness/utility of the
found solution or after a specified amount
of time has passed for the optimization
session and return the best flight
prioritization found until that point.

See REQ perf_4. The optimization process
cannot run forever and must return a result.
The optimization algorithm must be chosen
such that it will return a result no matter
when it is aborted.

The Heuristic Optimizer allows to specify a
fitness threshold and/or a maximum run
time as the criterion for finishing the
optimization run. The Heuristic Optimizer
also allows to specify other criteria for
finishing an optimization run, e.g., when the
found solutions do not improve in fitness
any more. The implementation of the
Heuristic Optimizer also supports aborting
an optimization run at any time while still
returning the best result obtained thus far.
Furthermore, after each iteration step, the
Heuristic Optimizer stores improved results
in a cache, which allows to obtain
intermediate results at any time.

priv_3 The airspace user (AU) flight prioritization
preferences shall remain confidential and
protected from honest-but-curious
platform operator individuals.

The Heuristic Optimizer has a privacy-
preserving mode. In this mode, the Heuristic
Optimizer calls the Privacy Engine for
evaluating a population of solutions to the
flight prioritization problem. The Privacy
Engine does not return a fitness value for
each solution sent by the Heuristic
Optimizer. Rather, the Privacy Engine
returns only the rank of each solution within
a population submitted by the Heuristic
Optimizer along with the maximum fitness
within the population.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 28

Req. Description Design Implications

priv_4 The AU flight prioritization preferences shall
be processed in encrypted/encoded form
only in the platform.

In privacy-preserving mode, the weights
remain encrypted and are not read by the
Heuristic Optimizer.

priv_5 The internally used representation of AU
flight prioritization by SlotMachine shall be
securely derived from AU input for each
flight prioritization and flight considered
(e.g. weights).

In privacy-preserving mode, the weights of
flights are not processed by the Heuristic
Optimizer. The Controller submits the
encrypted weight maps directly to the
Privacy Engine.

co_4 The Controller shall call the Heuristic
Optimizer to receive a ranked list of
optimized flight prioritization based on the
initial flight prioritization received from the
NMF.

When retrieving the results of an
optimization run from the Heuristic
Optimizer, the Controller may specify a
limit, i.e., how many results should be
returned. The number of available results
depends on the specific settings of the
evolutionary algorithm. For example, if the
population size of the genetic algorithm is
500 then up to 500 results are available but
typically fewer since some of the found
solutions will be duplicates. We expect,
however, that for practical purposes there
will be enough distinct solutions to find a
flight list acceptable for all airspace users.

ho_1 The Heuristic Optimizer shall evaluate each
flight prioritization independently from
other flight prioritizations.

The Heuristic Optimizer uses fitness values
of the flight lists found in one iteration step
to determine how to modify the found
solutions in the next iteration step. In order
to protect the confidentiality of the slot
preferences submitted by the airlines, the
Privacy Engine does not return a fitness
value for each individual flight list but only
the maximum fitness of a population along
with the ranks of the solutions within the
population (relative fitness). The Heuristic
Optimizer then estimates the fitness value
of each individual flight list in a population
of solutions.

ho_2 The Heuristic Optimizer shall receive
information about flights from the
Controller.

In the current implementation, the Heuristic
Optimizer receives only the flight identifier
and the scheduled time, which is required to
determine invalid solutions; a flight shall not
be planned for a slot earlier than the
originally scheduled departure time, i.e.,
“the time on the ticket”. The Heuristic

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 29

Req. Description Design Implications

Optimizer could be extended with a rule
engine that uses additional information
about flights, e.g., the size of the aircraft, to
find better initial solutions. Based on the
experiments conducted so far, we do not
expect such more elaborate approach to
finding initial solutions to be necessary in
order to achieve good results.

ho_3 The Heuristic Optimizer shall receive
encrypted flight prioritization preferences
of AUs from the Controller.

We changed the design such that the
Heuristic Optimizer does not receive any
preferences regarding slots when running in
privacy-preserving mode. Rather, the
Controller submits the preferences directly
to the Privacy Engine. In non-privacy-
preserving mode, the Heuristic Optimizer
receives the preferences in unencrypted,
plain form.

ho_4 The Heuristic Optimizer shall receive public
flight information from the Controller.

See ho_2

ho_5 The Heuristic Optimizer shall generate flight
prioritizations under consideration of public
flight information.

See ho_2

ho_6 The Heuristic Optimizer shall initialize a
Privacy Engine session with encrypted flight
prioritization preferences.

The Controller initializes the Privacy Engine
session. We deviate from the original
requirement in order to keep the Heuristic
Optimizer component more flexible. The
Controller should take care of all
administration issues while the Heuristic
Optimizer’s focus is on providing the
implementation of the evolutionary
algorithm. The Controller submits the
connection details of the employed and
configured Privacy Engine instance to the
Heuristic Optimizer.

ho_7 The Heuristic Optimizer shall use Privacy
Engine to evaluate fitness of generated
flight prioritizations.

The Heuristic Optimizer may run in privacy-
preserving or non-privacy-preserving mode.
In privacy-preserving mode, the Heuristic
Optimizer submits found solutions to the
Privacy Engine for evaluation.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 30

Req. Description Design Implications

ho_8 The Heuristic Optimizer shall return a
ranked list of flight prioritizations to the
Controller.

The Controller may specify how many flight
lists should be returned by the Heuristic
Optimizer upon retrieval of the results of an
optimization run. The returned flight lists
are ranked from best to worst.

ho_9 The Heuristic Optimizer shall always return
a solution, independent of the run time,
meaning that an optimization can be
aborted at any time and still return a valid
result.

See REQ perf_6.

The Heuristic Optimizer caches a population
of solutions found in an iteration step if the
population’s best flight list is better than the
best solution found thus far. Furthermore, if
a genetic algorithm is used, the algorithm
can be aborted at any time and still return a
result. The implementation of the Heuristic
Optimizer supports aborting the
optimization run at any time (after the first
iteration step has finished) while still
returning a valid flight list.

 Experiments

In order to evaluate the impact of using the BatchEvaluator class with relative fitness values we
conducted experiments with generated test data corresponding to different scenarios. We used the
scenarios and test data from previous experiments, the results of which are reported in D4.1 – Report
on State-of-the-Art of Relevant Concepts [9]. We refer to that document for additional experiment
using the non-privacy-preserving prototype with different configurations of genetic algorithms and
other heuristic local search algorithms, using absolute fitness values.

6.2.1 Setup

Table 3 lists the cases that are used for each selected optimizer configuration. The parameter no. of
slots refers to the number of slots/flights that have to be matched. The parameter run time refers to
the amount of time which the optimization algorithm is allowed to run; the optimization is stopped
when the time is over and the best solution found up to that point is the optimization result. We refer
to Chapter 6 of D4.1 [9] for a detailed explanation of the parameters concentration, priorities, and
margins. Intuitively, an “even” concentration refers to cases where each flight desires a separate slot,
which makes optimization trivial. An “extreme” concentration refers to cases where many flights
desire the same few slots. A “moderate” concentration refers to cases where there are some overlaps
between flights regarding the desired slots but the times wished are not concentrated on only a few
slots. Priorities in the “middle” refers to cases where the flights with wished time slots in the middle
of the available timeline of slots have generally higher priorities. Priorities at the “fringes” refers to
cases where the flights with wished time slots at the fringes of the available timeline of slots have
generally higher priorities. “Even” priorities refers to cases where all flights are equally important.
Finally, “broad” margins refers to cases where the time window around the time wished is ± 25
minutes, “normal” margins is ± 15 minutes, and “narrow” margins is ± 5 minutes.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 31

Table 3. Cases used in experiments

Case # Concentration Priorities Margins No. of Slots Run Time

1 Even Middle Broad 100 10 s

2 Extreme Middle Broad 100 10 s

3 Moderate Middle Broad 100 10 s

4 Even Fringes Broad 100 10 s

5 Extreme Fringes Broad 100 10 s

6 Moderate Fringes Broad 100 10 s

7 Even Even Broad 100 10 s

8 Extreme Even Broad 100 10 s

9 Moderate Even Broad 100 10 s

10 Even Middle Normal 100 10 s

11 Extreme Middle Normal 100 10 s

12 Moderate Middle Normal 100 10 s

13 Even Fringes Normal 100 10 s

14 Extreme Fringes Normal 100 10 s

15 Moderate Fringes Normal 100 10 s

16 Even Even Normal 100 10 s

17 Extreme Even Normal 100 10 s

18 Moderate Even Normal 100 10 s

19 Even Middle Narrow 100 10 s

20 Extreme Middle Narrow 100 10 s

21 Moderate Middle Narrow 100 10 s

22 Even Fringes Narrow 100 10 s

23 Extreme Fringes Narrow 100 10 s

24 Moderate Fringes Narrow 100 10 s

25 Even Even Narrow 100 10 s

26 Extreme Even Narrow 100 10 s

27 Moderate Even Narrow 100 10 s

For our experiments, we selected the three most promising genetic algorithm configurations from
those investigated in D4.1 – Report on State-of-the-Art of Relevant Concepts [9]. Table 4 lists the
parameters of the selected genetic algorithm configurations used in the experiments. The
Configuration J1 corresponds to Configuration 2 in the experiments from D4.1, Configuration J2
corresponds to Configuration 6, and Configuration J3 corresponds to Configuration 14. The maximal
phenotype age was always 80, the offspring fraction 0.7.

Table 4. Genetic algorithm configurations used in experiments

Configuration Population
Size

Tournament
Size

Mutator Alter
Probability

Crossover Alter
Probability

J1 500 50 0.15 0.90

J2 500 10 0.15 0.90

J3 70 10 0.15 0.90

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 32

We ran the experiments on an OpenVZ virtual machine on a physical machine with an Intel Xeon CPU
E5-2640 v4 with 2.40 GHz. The virtual machine had 8 GB of main memory and could use up to 40 cores
of the physical CPU. The operating system of the virtual machine was CentOS Linux 7. The Java Virtual
Machine ran with a heap size of 2 GB. We used OpenJDK 16 for running the Heuristic Optimizer.

6.2.2 Results

Our experiments were, on the one hand, aimed at finding out whether using an evolutionary algorithm
with relative fitness values is a feasible approach and, on the other hand, which method for estimating
fitness values works best given the information returned by the Privacy Engine. The benchmark for the
genetic algorithm configurations is the Hungarian algorithm, which will find the optimal solution in
terms of fitness but cannot be used together with the Privacy Engine. We first compare the different
genetic algorithm configurations running with no estimator, i.e., computing an absolute fitness value
for each individual in the population and using the absolute fitness value as the basis for finding new
solutions, against the Hungarian algorithm. We then run the same genetic algorithm configurations
using different types of fitness estimators; in those runs, the estimated fitness value serves as the basis
for finding new solutions.

Figure 12 summarizes the results of running optimizations with no estimator (using actual fitness
values) for the different cases. Light green denotes cases where the respective configuration found a
solution with 90% or more of the optimal fitness. Light yellow denotes cases where the respective
configuration found a solution with between 80% and 90% of the optimal fitness. Light red denotes
cases where the respective configuration found a solution with less than 80% of the optimal fitness. In
general, the genetic algorithm configurations perform well. We note that in general, the genetic
algorithm optimization works well. The cases where the best solution found by the genetic algorithm
is less than 80% of the optimal fitness are those where a reasonably “good” solution cannot be found
due to narrow margins given by the airspace users and/or concentrated airspace user preferences for
only a few slots. In that case, the optimal solution is simply the “least bad” solution and in practice, in
such situations, there might not even be a globally acceptable solution for airspace users anyway. We
also note that in our experiments, the run time of the genetic algorithm was set rather low, with 10
seconds. Longer run times may lead to improved solutions closer to the optimum.

Figure 13 shows results of running genetic algorithm optimizations with the linear estimator, Figure 14
shows the results of the optimizations with the logarithmic estimator, and Figure 15 shows the results
of the optimizations with the sigmoid estimator. The results indicate that the use of an estimator does
not considerably input the quality of the outcome of the optimization. Overall, we conclude that the
proposed approach with a genetic algorithm and relative fitness values returned by the Privacy Engine
is indeed feasible and can further be pursued.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 33

Figure 12. Average/best fitness over five runs of various genetic algorithm configurations using no fitness
estimator, i.e., evaluation through computation of absolute fitness.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 34

Figure 13. Average/best fitness over five runs of various genetic algorithm configurations using a linear fitness
estimator when maximum fitness of a population and a ranking of individuals within the population is known.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 35

Figure 14. Average/best fitness over five runs of various genetic algorithm configurations using a logarithmic
fitness estimator when maximum fitness of a population and a ranking of individuals within the population is
known.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 36

Figure 15. Average/best fitness over five runs of various genetic algorithm configurations using a sigmoid
fitness estimator when maximum fitness of a population and a ranking of individuals within the population is
known.

The fitness estimator aims to derive the fitness of the individual solutions in a population given the
ranks of the solutions and the population’s maximum fitness value. We conclude that using a fitness
estimator does not severely impact the performance of the genetic algorithm, demonstrating the
general feasibility of the optimization process involving Heuristic Optimizer and Privacy Engine as
proposed by the SlotMachine project.

We implemented different estimators (see Chapter 5) and investigated how well the different
estimators represent the real distribution of the fitness in a population. In the following we show the
evolution of the actual and estimated fitness values of the configuration J1 in Case 9 and Case 20,
respectively, used with the different estimators. The cases were selected for the following reasons.
Case 9 with moderate concentration and wide margins is comparatively unproblematic regarding
optimization. Case 20 is more challenging, with extreme concentration and narrow margins.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 37

Figure 16. Evaluated fitness distribution in different generations of J1 applied to Case 9 using no estimator

Figure 16 and Figure 17 show the evolution of the fitness distribution in a population for Case 9 and
Case 20, respectively, using no fitness estimator, i.e., actual fitness values are used by the genetic
algorithm. Each diagram plots the actual fitness value for the ith individual of a population ranked by
fitness value. We conducted the runs with no estimator to have a comparison for the distributions
returned by the estimators.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 38

Figure 17. Evaluated fitness distribution in different generations of J1 applied to Case 20 using no estimator

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 39

Figure 18. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using
linear estimator

Figure 18 and Figure 19 show the evolution of the fitness distribution in a population for Case 9 and
Case 20, respectively, using the linear fitness estimator. Since there are duplicate solutions in the
population, the linear estimation is not perfectly linear but in the first half of the population decreases
in steps. With Case 20, when the initial fitness is rather low, the estimator is a particularly bad
reflection of the real distribution but also in general we note that the linear estimator is generallynot
very accurate.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 40

Figure 19. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20
using linear estimator

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 41

Figure 20. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using
logarithmic estimator

Figure 20 and Figure 21 show the evolution of the fitness distribution in a population for Case 9 and
Case 20, respectively, using the logarithmic fitness estimator. The logarithmic estimator seems to
capture the real distribution best although the estimation of the minimum value was either too low
(in the “good” Case 9) or too high (in the “bad” Case 20).

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 42

Figure 21. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20 using
logarithmic estimator

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 43

Figure 22. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using
sigmoid estimator

Figure 22 and Figure 23 show the evolution of the fitness distribution in a population for Case 9 and
Case 20, respectively, using the sigmoid fitness estimator. The sigmoid estimator does not seem to
accurately capture the real distribution of the fitness values.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 44

Figure 23. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20 using
sigmoid estimator

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 45

7 Conclusions

The Heuristic Optimizer component of the SlotMachine system drives the optimization of flight lists.
The privacy-preserving nature of the optimization process in the SlotMachine system means that a
simple deterministic optimization algorithm cannot be employed. Rather, the Heuristic Optimizer
employs an evolutionary optimization algorithm for finding solutions to the optimization problem and
invokes the Privacy Engine for evaluation of the solutions. Nevertheless, even evolutionary algorithms
cannot be readily employed. In order to preserve the confidentiality of the airspace users’ preferences,
the Privacy Engine does not return fitness values for the entire population of flight lists found by the
Heuristic Optimizer but only ranks the solutions and returns the maximum fitness within the
population. This particular approach to evaluation of the population also requires a specific fitness
function that use an estimator to derive fitness values for the individual flight lists in the population
during the optimization runs.

When implementing the Heuristic Optimizer we aimed for flexibility. Hence, the Heuristic Optimizer is
a framework that allows to easily plug in different implementations of evolutionary algorithms. A
genetic algorithm module has been implemented and can be used for privacy-preserving optimization
runs in conjunction with the SlotMachine system. Non-privacy-preserving modules using other types
of evolutionary algorithms and a deterministic algorithm, respectively, have also been implemented
during an initial exploration phase (see D4.1 – Report on State of the Art of Relevant Concepts [9]).
Those additional modules cannot (yet) be readily used together with the Privacy Engine although some
of the employed local search algorithms could likely be adapted for use with the Privacy Engine. If
further experimentation and validation activities in the SlotMachine project show that the current
genetic algorithm implementation is insufficient an improved evolutionary algorithm module could be
easily integrated into the general Heuristic Optimizer framework.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 46

8 References

[1] SESAR, „D4.2 - Specification of Evolutionary Algorithm,“ SlotMachine, 890456, 2021.

[2] D. Simon, Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based
Approaches to Computer Intelligence, Wiley, 2013.

[3] M. Affenzeller, S. Winkler, S. Wagner und A. Beham, Genetic Algorithms and Genetic
Programming: Modern Concepts and Practical Applications, CRC Press, 2009.

[4] F. Wilhelmstötter, „Jenetics Library User's Manual 6.3,“ 2021. [Online]. Available:
https://jenetics.io/manual/manual-6.3.0.pdf. [Zugriff am 14 January 2022].

[5] SESAR, „D2.1 - Requirements Specification,“ SlotMachine, 890456, 2021.

[6] SESAR, „D2.2 - System Design Document,“ SlotMachine, 890456, 2021.

[7] SESAR, „D2.3 - Business Concepts,“ SlotMachine, 890456, 2021.

[8] SESAR, „D3.2 - Specification of the PrivacyEngine Component,“ SlotMachine, 890456, 2021.

[9] SESAR, „D4.1 - Report on State of the Art of Relevant Concepts,“ SlotMachine, 890456, 2021.

[10] SESAR, „D5.1 - SlotMachine Platform Demonstrator,“ SlotMachine, 890456, 2021.

[11] V. Yadaiah und V. V. Haragopal, „A new approach of solving single objective unbalanced
assignment problem,“ American Journal of Operations Research, Bd. 6, Nr. 1, 2016.

[12] H. W. Kuhn, „The Hungarian Method for the assignment problem,“ Naval Research Logistics
Quarterly, Bd. 2, Nr. 1-2, pp. 83-97, 1955.

[13] H. W. Kuhn, „Variants of the Hungarian method for assignment problems,“ Naval Research
Logistics Quarterly, Bd. 3, Nr. 4, pp. 253-258, 1956.

[14] J. Munkres, „Algorithms for the assignment and transportation problems,“ Journal of the Society
for Industrial and Applied Mathematics, Bd. 5, Nr. 1, pp. 32-38, 1957.

[15] J. Edmonds und R. M. Karp, „Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems,“ Journal of the ACM, Bd. 19, Nr. 2, pp. 248-264, 1972.

[16] E. Gamma, R. Helm, R. Johnson und J. Vlissides, „Design Patterns: Elements of Reusable Object-
Oriented Software,“ Addison Wesley, 1994.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 47

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 48

Appendix A T -P y L b

Table 5 lists the directly used third-party libraries. Those libraries use also additional libraries, which
are not listed here. We refer to the documentation of those libraries for any additional dependencies.

Table 5. List of third-party libraries

Library Version License Purpose

Spring Boot 2.4.3 Apache License 2.0 The Spring Boot framework is used to realize
the REST interface of the Heuristic Optimizer.

Springfox 2.6.1 Apache License 2.0 The Springfox framework generates a Swagger
documentation for the REST interface.

Jenetics 6.3.0 Apache License 2.0 The Jenetics framework facilitates the
implementation of genetic algorithms.

OptaPlanner 8.14.0.Final Apache License 2.0 The OptaPlanner framework provides
implementations of common local search
algorithms.

Log4J2 2.17.0 Apache License 2.0 The Log4J2 framework provides logging
capabilities.

D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM

SlotMachine!!

 49

