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Abstract  

The SlotMachine system employs an evolutionary algorithm in conjunction with multiparty 
computation to optimize flight lists in a privacy-preserving way. This document describes the Heuristic 
Optimizer component of the SlotMachine system, which realizes the evolutionary algorithm for finding 
solutions to the SlotMachine flight prioritization problem. The Heuristic Optimizer provides an 
extendable framework allowing to plug in different implementations of evolutionary algorithms for 
optimization of flight lists; this document describes a configurable genetic algorithm implementation. 
Experiments conducted with generated synthetic data for different scenarios serve to evaluate the 
implementation of the Heuristic Optimizer. 

  



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 3 
 

 

 

Table of Contents 

Abstract ................................................................................................................................... 2 

1 Introduction ............................................................................................................... 6 

 Purpose of the document............................................................................................... 6 

 Scope ............................................................................................................................ 6 

 Intended readership ...................................................................................................... 6 

 Background ................................................................................................................... 6 

 Structure of the document and relation to other deliverables ......................................... 6 

2 Heuristic Optimizer: Overview .................................................................................... 8 

 SlotMachine Flight Prioritization Problem ...................................................................... 8 

 Evolutionary Optimization Algorithm ............................................................................. 9 

 Heuristic Optimizer and Privacy Engine ........................................................................ 11 

3 Framework .............................................................................................................. 12 

 Structure ..................................................................................................................... 12 

 Creating and Initializing an Optimization ...................................................................... 14 

 Running an Optimization ............................................................................................. 15 

4 Genetic Algorithm .................................................................................................... 16 

 Parameters .................................................................................................................. 16 

 Implementation........................................................................................................... 19 
4.2.1 Structure ......................................................................................................................................... 19 
4.2.2 Creating and Initializing an Optimization ........................................................................................ 21 
4.2.3 Running an Optimization ................................................................................................................. 22 

5 Fitness Function ....................................................................................................... 24 

6 Evaluation ............................................................................................................... 26 

 Relation to Requirements ............................................................................................ 26 

 Experiments ................................................................................................................ 30 
6.2.1 Setup ............................................................................................................................................... 30 
6.2.2 Results ............................................................................................................................................. 32 

7 Conclusions .............................................................................................................. 45 

8 References ............................................................................................................... 46 

Appendix A Third-Party Libraries ............................................................................... 48 
 

List of Tables 
Table 1. Parameters for the genetic algorithm ..................................................................................... 17 



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 4 
 

 

 

Table 2. Requirements from D2.1 and their implications on the design of the Heuristic Optimizer ... 26 

Table 3. Cases used in experiments ...................................................................................................... 31 

Table 4. Genetic algorithm configurations used in experiments .......................................................... 31 

Table 5. List of third-party libraries ....................................................................................................... 48 

 

List of Figures 
Figure 1. The SlotMachine flight prioritization problem as an unbalanced assignment problem .......... 8 

Figure 2. Principle of the iterative optimization process of a genetic algorithm .................................. 10 

Figure 3. Principle of the iterative optimization algorithm with ranked population and fitness 
estimation ............................................................................................................................................. 11 

Figure 4. UML class diagram for optimization runs in the Heuristic Optimizer component ................. 13 

Figure 5. UML sequence diagram of the creation and initialization of an optimization run ................ 14 

Figure 6. UML sequence diagram for starting an optimization run and retrieving the results ............ 15 

Figure 7. UML class diagram for initiating and running optimizations using the Jenetics framework . 20 

Figure 8. UML sequence diagram of the creation of an optimization run using the Jenetics framework
 ............................................................................................................................................................... 21 

Figure 9. UML sequence diagram of an optimization run using the Jenetics framework..................... 22 

Figure 10. UML sequence diagram of batch evaluation of a population of flight lists ......................... 23 

Figure 11. Distribution of fitness values for different fitness estimators ............................................. 25 

Figure 12. Average/best fitness over five runs of various genetic algorithm configurations using no 
fitness estimator, i.e., evaluation through computation of absolute fitness. ...................................... 33 

Figure 13. Average/best fitness over five runs of various genetic algorithm configurations using a linear 
fitness estimator when maximum fitness of a population and a ranking of individuals within the 
population is known. ............................................................................................................................. 34 

Figure 14. Average/best fitness over five runs of various genetic algorithm configurations using a 
logarithmic fitness estimator when maximum fitness of a population and a ranking of individuals within 
the population is known. ....................................................................................................................... 35 

Figure 15. Average/best fitness over five runs of various genetic algorithm configurations using a 
sigmoid fitness estimator when maximum fitness of a population and a ranking of individuals within 
the population is known. ....................................................................................................................... 36 

Figure 16. Evaluated fitness distribution in different generations of J1 applied to Case 9 using no 
estimator ............................................................................................................................................... 37 



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 5 
 

 

 

Figure 17. Evaluated fitness distribution in different generations of J1 applied to Case 20 using no 
estimator ............................................................................................................................................... 38 

Figure 18. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
9 using linear estimator ......................................................................................................................... 39 

Figure 19. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
20 using linear estimator ....................................................................................................................... 40 

Figure 20. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
9 using logarithmic estimator ................................................................................................................ 41 

Figure 21. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
20 using logarithmic estimator.............................................................................................................. 42 

Figure 22. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
9 using sigmoid estimator ..................................................................................................................... 43 

Figure 23. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 
20 using sigmoid estimator ................................................................................................................... 44 

 



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 6 
 

 

 

1 Introduction 

 Purpose of the document 

The purpose of this document is to specify the Heuristic Optimizer component of the SlotMachine 
system, which is responsible for optimizing flight lists given the airspace users’ preferences. To this 
end, the Heuristic Optimizer employs an evolutionary algorithm. This document describes, on the one 
hand, the general framework of the Heuristic Optimizer component, which allows to plug in different 
implementations of evolutionary algorithms. On the other hand, this document also describes a 
concrete implementation of a genetic algorithm that can be used to optimize flight lists. 

 Scope 

This document describes an extensible implementation of a framework for running optimizations of 
flight lists in the SlotMachine project. The implementation will serve as the basis for further 
development and can be integrated into the SlotMachine system. 

 Intended readership 

The SlotMachine project team will use this document as reference for further development effort 
regarding the integration of the SlotMachine system’s individual components. The experimental 
evaluation presented in this document will serve as the basis for decisions regarding further 
development effort in the area of performance tuning. Beyond the project, researchers and 
practitioners find a novel approach in this document for solving an optimization problem in a privacy-
preserving way using evolutionary algorithms. 

 Background 

The Heuristic Optimizer component described in this document is an extension of the non-privacy-
preserving variant described in D4.1 – Report on State of the Art of Relevant Concepts [1]. The 
presented implementation of the Heuristic Optimizer builds on related work on evolutionary 
optimization algorithms [2], [3] in general and employs an open-source framework for the 
implementation of genetic algorithms in Java [4]. 

 Structure of the document and relation to other deliverables 

The general structure of this document is as follows. 

• Chapter 1 (this section) provides a general idea of the entire document. It includes the purpose, 
readership, inputs from other projects, component purpose and high-level overview and 
acronyms used in the document. 

• Chapter 2 characterizes the optimization problem solved by the Heuristic Optimizer 
component and explains the intuition of the privacy-preserving optimization process. 

• Chapter 3 describes the Heuristic Optimizer’s general framework, which was designed having 
the goal of extensibility in mind. 
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• Chapter 4 describes the genetic algorithm implementation which was plugged into the 
Heuristic Optimizer’s general framework; this implementation serves as the basis for 
experimentation and will form the basis for further development. 

• Chapter 5 discusses the Heuristic Optimizer’s approach to evaluate the found solutions using 
the information provided by the Privacy Engine. 

• Chapter 6 examines the Heuristic Optimizer’s relation to the requirements and presents the 
results of experiments using generated synthetic data for different scenarios. 

• Chapter 7 concludes the document. 

• Chapter 8 lists the references. 

• Appendix A lists the third-party libraries used in the implementation. 

This document relates to the other deliverables of the SlotMachine project as follows. 

• D2.1 – Requirements Specification [5]: The requirements are the foundation for the design and 
implementation of the Heuristic Optimizer described in this document; this document refers 
to the requirements in D2.1. 

• D2.2 – System Design Document [6]: The system design document describes the interfaces of 
the Heuristic Optimizer and details the interactions of the Heuristic Optimizer with other 
components. 

• D2.3 – Business Concepts [7]: More details on operational background, deployment options, 
and market mechanisms can be found in D3.2. 

• D3.2 – Specification of the Privacy Engine component [8]: The Privacy Engine and related 
components (MPC Nodes and Credit Handling) are described in further detail in D3.2. The 
Heuristic Optimizer invokes the Privacy Engine for evaluating the found solutions. 

• D4.1 – Report on State of the Art of Relevant Concepts [9]: An overview of genetic algorithms 
and local search can be found in D4.1. A non-privacy-preserving implementation of the 
Heuristic Optimizer was used for experiments to determine the suitability of different types of 
evolutionary algorithms for the SlotMachine project. The cases from the experiments in D4.1 
were the basis for the experiments described in this document using the extended 
implementation of the Heuristic Optimizer. 

• D5.1 – SlotMachine Platform Demonstrator [10]: The platform demonstrator will integrate the 
individual components for evaluation. 
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2 Heuristic Optimizer: Overview 

In the following, we first characterize the SlotMachine flight prioritization problem that the Heuristic 
Optimizer solves. We then explain the principle of the Heuristic Optimizer’s evolutionary algorithm 
driving the optimization process before explaining the relation between the Heuristic Optimizer and 
the Privacy Engine component of the SlotMachine system. 

 SlotMachine Flight Prioritization Problem 

From an economic perspective (see also D2.3 – Business Concepts [7]) the SlotMachine system aims 
to maximize the overall utility of airspace users. In order to facilitate optimization of flight lists, each 
airspace user may provide a valuation for each slot and flight. 

Generally speaking, the SlotMachine flight prioritization problem is an assignment problem that is 
possibly unbalanced [11]. The problem to be solved is to find a mapping between two sets of objects 
– flights and slots (see Figure 1) – minimizing overall costs or maximizing the overall benefit given a 
cost or a benefit matrix, respectively. If the goal is to minimize costs or maximize benefits of the 
assignment, the problem can be considered a single-objective assignment problem. The problem is 
unbalanced if the number of elements differs between the sets to be mapped; in the SlotMachine 
flight prioritization problem there may be possibly more slots than flights. 

 

Flights Slots

1

2

3
4

12

3

4

5

 

Figure 1. The SlotMachine flight prioritization problem as an unbalanced assignment problem 

 

Formally, given a set F of flights and a set S of slots, the objective of the optimization is to maximize 
the overall utility U given a utility function u and an assignment function m of flights to slots as follows. 

𝑈 = ∑  ∑  𝑢𝑓 𝑠 ∙ 𝑚𝑓 𝑠

𝑠 ∈ 𝑆𝑓 ∈ 𝐹

  

The assignment function m defines for each combination of flight and slot whether the flight is assigned 
to that particular slot. 

∀ 𝑓 ∈ 𝐹 ∶  ∀  𝑠 ∈ 𝑆 ∶  𝑚𝑓 𝑠 = {
1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The utility of a slot for a flight is a numeric value. The utility function u is often expressed in form of a 
utility matrix. 

[

𝑢1 1 ⋯ 𝑢1 𝑠

⋮ ⋱ ⋮
𝑢𝑓 1 ⋯ 𝑢𝑓 𝑠

] 

Each row in the utility matrix specifies the utilities of the different slots for a particular flight, with each 
column representing a different slot. Each entry 𝑢𝑓 𝑠 in the utility matrix thus defines the utility of a 

slot s for a flight f. In this representation, the set of flights F and the set of slots S are assumed to be 
ordered. For example, the entry 𝑢1 5 of the utility matrix u then defines the utility of the 5th slot in S 
for the 1st flight in F. We also refer to the utility matrix as weight map or weight table. 

We can also define the following constraints for the problem. 

• Each flight must be assigned to exactly one slot, i.e., ∀ 𝑓 ∈ 𝐹 ∶  ∃!  𝑠 ∈ 𝑆 ∶  𝑚𝑓 𝑠 = 1 . 

Alternatively, the sum of the values of 𝑚𝑓 𝑠 for every flight f must be 1, i.e., ∀ 𝑓 ∈ 𝐹 ∶

 ∑ 𝑚𝑓 𝑠 = 1𝑠 ∈ 𝑆 . 

• A flight must not be assigned to a slot with a time that is before the flight’s originally scheduled 
time, i.e.,  

∀ 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆 ∶ (𝑚𝑓 𝑠 = 1) ⇒  𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑇𝑖𝑚𝑒(𝑓) ≤ 𝑡𝑖𝑚𝑒(𝑠) 

where the function 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑇𝑖𝑚𝑒 denotes the originally scheduled time of a flight, the 
function 𝑡𝑖𝑚𝑒 denotes the time of a slot, and ≤ is the total order of times; we say 𝑡 ≤ 𝑡′ if and 
only if time t is before or equal to time t’. 

The Heuristic Optimizer component described in this document solves the SlotMachine flight 
prioritization problem as a single-objective, possibly unbalanced assignment problem with utility 
maximization. Future work may, however, extend the Heuristic Optimizer to work with multi-objective 
optimization, particularly in relation to more elaborate market mechanisms. 

 Evolutionary Optimization Algorithm 

A number of deterministic optimization algorithms have been proposed to solve the single-objective 
assignment problem. For example, the Hungarian method [12] [13] – also known as Hungarian 
algorithm, Kuhn–Munkres algorithm, or Munkres assignment algorithm – is arguably the most well-
known optimization algorithm for the single-objective assignment problem. The Hungarian algorithm 
is of polynomial time [14] and a variant of the algorithm with a complexity of 𝑂(𝑛3) can be 
devised [15], which would allow for efficiently solving the SlotMachine flight prioritization problem in 
a non-privacy-preserving setting. 

In a privacy-preserving setting, a deterministic optimization algorithm for the single-objective 
assignment problem would have to be implemented entirely using multiparty computation. 
Preliminary results suggest that this approach is impractical for solving the SlotMachine flight 
prioritization problem (see D3.2 – Specification of the Privacy Engine Component [8]). Furthermore, 
when moving away from single-objective, purely utility-based optimization to a more complex multi-
objective optimization, which may be necessary for realizing more complex market mechanisms (see 
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D2.3 – Business Concepts [7]), the complexity of a deterministic algorithm would increase even in a 
non-privacy-preserving setting, let alone the privacy-preserving setting. Thus, the choice for an 
evolutionary algorithm also provides additional flexibility for future development. 

For solving the SlotMachine flight prioritization problem in a privacy-preserving way we propose to 
employ an evolutionary algorithm, which allows to separate the finding of solutions to the problem, 
i.e., flight lists, from the evaluation of the fitness, i.e., the overall utility, of the solutions. Figure 2 
illustrates the principle of the optimization using a genetic algorithm, which is a type of evolutionary 
algorithm. The genetic algorithm starts with a population of solutions to the optimization problem, in 
this case flight lists, e.g., Flight A is assigned to the 1st slot, Flight B is assigned to the 2nd slot, and so 
on. The population is then evaluated, each individual is assigned a fitness value – the solution’s overall 
utility. Through recombination and mutation of the evaluated solutions a new generation of solutions 
is created, replacing the previous population, and the cycle starts again. The genetic algorithm can be 
stopped at any time. In practice, different termination criteria can be specified, e.g., a time limit or a 
certain number of generations without increase in maximum fitness of the found solutions. 
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Figure 2. Principle of the iterative optimization process of a genetic algorithm 

 

The Heuristic Optimizer is flexible regarding the employed evolutionary algorithm. In the current 
version the Heuristic Optimizer employs a genetic algorithm for running optimizations in a privacy-
preserving way. Implementations of other types of evolutionary/heuristic optimization algorithms or 
possibly more efficient implementations of the genetic algorithm, however, may be easily plugged into 
the general framework of the Heuristic Optimizer. 
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 Heuristic Optimizer and Privacy Engine 

The Heuristic Optimizer is designed to work together with the SlotMachine system’s Privacy Engine 
component, which takes over the evaluation of the individuals in the population of the evolutionary 
algorithm. The Privacy Engine employs multiparty computation over encrypted weight maps to 
determine the fitness of the solutions in a privacy-preserving manner (see D3.2 – Specification of the 
Privacy Engine Component [8]). In order to not leak too much information, the Privacy Engine does not 
disclose individual fitness values of the entire population to the Heuristic Optimizer. Rather, the Privacy 
Engine ranks the individuals of a population by fitness value and returns only the maximum fitness 
value of the population. In this case, an honest-but-curious platform provider may not simply infer the 
airspace users’ preferences from the fitness values of the different populations. The cost for preserving 
the confidentiality of the inputs may, however, be reduced performance of the optimization algorithm 
in terms of achieved fitness of the found solution. 

Figure 3 illustrates the principle of running the evolutionary optimization algorithm in connection with 
the Privacy Engine. In each iteration step, a population of candidate solutions (flight lists) is evaluated 
– which in privacy-preserving mode is taken over by the Privacy Engine. The result of the evaluation is 
a ranked list of individuals along with the maximum fitness in the population, which is disclosed to the 
Heuristic Optimizer. The Heuristic Optimizer then estimates the fitness values of the individuals using 
a specific estimation function; the estimation function used by the Heuristic Optimizer can be 
configured. The fitness estimates are the basis for recombination and mutation of the solutions, which 
produce the next generation of the population. 
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Figure 3. Principle of the iterative optimization algorithm with ranked population and fitness estimation 
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3 Framework 

In this chapter we describe the general framework of the Heuristic Optimizer. The Heuristic Optimizer’s 
implementation focuses on flexibility and extensibility regarding the type of (evolutionary) algorithm 
used to conduct the optimization of flight lists. The general framework of the Heuristic Optimizer can 
be used with different types of (evolutionary) algorithms. We refer to Chapter 4 for a concrete 
implementation of optimization runs using a genetic algorithm. 

 Structure 

Figure 4 shows the main classes that make up the general framework of the Heuristic Optimizer. The 
central class is the OptimizationService, the methods of which are invoked by the 
OptimizationEndpoint, which realizes the REST interface to be accessed by the Controller (see 
D2.2 – System Design Document [6]). The OptimizationService is a Spring service component. The 
OptimizationEndpoint class is implemented as a Spring REST endpoint; Spring is an open-source 
framework for the development of web applications1.  

The Heuristic Optimizer is a framework that allows to easily plug in modules for different 
implementations of (evolutionary) algorithms to solve the SlotMachine flight prioritization problem. In 
particular, the Heuristic Optimizer employs the abstract factory design pattern [16, p. 87ff] to provide 
increased flexibility regarding the used optimization algorithm. The OptimizationService class 
refers to the abstract classes Optimization and OptimizationFactory. Which concrete 
implementations of these abstract classes are used depends on the configuration of the optimization 
run – more specifically, the framework parameter’s value in the JSON configuration passed to the 
REST endpoint during creation and initialization of the optimization run. 

The domain model consists of the classes Flight and Slot, which are used across different 
implementations of evolutionary algorithms to characterize the result of the optimization – a mapping 
of flights to slots. The different implementations may have separate internal representations that are 
used during optimization, e.g., the genetic algorithm employs a Problem class and an encoding during 
the optimization runs. 

An OptimizationConfiguration defines the characteristics of the optimization. The 
OptimizationConfiguration class is abstract, each module implementing an evolutionary 
algorithm provides its own concrete implementation of OptimizationConfiguration. The 
OptimizationConfiguration class itself contains a Map<String, Object> to represent 
parameters. Concrete implementations may provide convenience methods to write parameters 
specific to the evolutionary algorithm into the map. 

The abstract FitnessEstimator is required for the privacy-preserving mode when the Privacy 
Engine is used to evaluate the population (see Chapter 5). 

 

 

1 https://spring.io/ 
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Figure 4. UML class diagram for optimization runs in the Heuristic Optimizer component 
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 Creating and Initializing an Optimization 

Figure 5 illustrates the internal sequence of the creation and initialization of an optimization within 
the Heuristic Optimizer. To create and initialize an optimization, the Controller submits the 
corresponding request to the Heuristic Optimizer’s REST endpoint (OptimizationEndpoint), which 
is implemented using Spring Boot; we refer to D2.2 – System Design Document [6] for a specification 
of the REST interface. The Heuristic Optimizer’s REST endpoint then calls the 
OptimizationService. 

 

 

Figure 5. UML sequence diagram of the creation and initialization of an optimization run 
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 Running an Optimization 

Figure 6 illustrates the internal sequence for asynchronously running an optimization and retrieving 
the results. The optimization can be run in a separate thread. 

 

Figure 6. UML sequence diagram for starting an optimization run and retrieving the results 
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4 Genetic Algorithm 

The Heuristic Optimizer’s general framework allows to plug in different implementations of 
evolutionary algorithms to actually conduct the optimization. In order for the Heuristic Optimizer to 
work there must be at least one such implementation provided. In the following, we describe a genetic 
algorithm implementation employing the Jenetics framework2. 

 Parameters 

The genetic algorithm’s behaviour is determined by different parameters that can be set in an 
optimization run’s configuration upon creation and initialization of the optimization run. Consider the 
following example of an optimization run’s configuration in JSON notation. 

{ 
  "optId": "237dd935-bfd7-470a-998e-cfcb3be09a18", 
  "flights": […], 
  "slots": […], 
  "optimizationMode": "PRIVACY_PRESERVING", 
  "fitnessEstimator": "LOGARITHMIC", 
  "optimizationFramework": "JENETICS", 
  "parameters": { 
    "populationSize": 500, 
    "maximalPhenotypeAge": 80, 
    "offspringFraction": 0.7, 
    "crossover": "PARTIALLY_MATCHED_CROSSOVER", 
    "crossoverAlterProbability": 0.35, 
    "survivorsSelector": "TOURNAMENT_SELECTOR", 
    "survivorsSelectorParameter": 50, 
    "mutator": "SWAP_MUTATOR", 
    "mutatorAlterProbability": 0.15, 
    "offspringSelector": "TOURNAMENT_SELECTOR", 
    "offspringSelectorParameter": 50, 
    "terminationConditions": { 
      "BY_EXECUTION_TIME": 10 
    }, 
  } 
 
} 

The configuration indicates that the Jenetics framework, i.e., the genetic algorithm module of the 
Heuristic Optimizer, shall be used for running the optimization in privacy-preserving mode using the 
logarithmic fitness estimator (see Chapter 5). The parameters array differs between different 
implementations of evolutionary algorithm; the example shows the parameters for the Jenetics 
implementation of a genetic algorithm. 

 

 

2 https://jenetics.io/ 
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Table 1 describes the parameters of the Jenetics implementation of a genetic algorithm. The 
parameters are derived from the parameters that are passed to the various classes provided by the 
Jenetics framework; we refer to the Jenetics manual for further information [4]. 

Table 1. Parameters for the genetic algorithm 

Parameter Description Type 

populationSize The number of 
individuals considered in 
each iteration step. 

(Positive) Integer 

maximalPhenotypeAge The maximum number 
of generations an 
individual is allowed to 
live 

(Positive) Integer 

offspringFraction The fraction of the 
offspring that is kept in 
the evolutionary 
process. 

Number in the interval [0, 1[ 

crossover The recombination 
operator used to derive 
new solutions from the 
existing population. 

String/Enum; in the current 
implementation only the option 
“PARTIALLY_MATCHED_CROSSOVER” 
is supported. 

crossoverAlterProbability The probability that an 
individual is selected for 
recombination. 

Number in the interval [0, 1[ 

survivorsSelector The selector that serves 
to select the survivors of 
a generation. 

String/Enum; the following options are 
supported: “BOLTZMANN_SELECTOR”, 
“EXPONENTIAL_RANK_SELECTOR”, 
“LINEAR_RANK_SELECTOR”, 
“ROULETTE_WHEEL_SELECTOR”, 
“STOCHASTIC_UNIVERSAL_SELECTOR”, 
“TOURNAMENT_SELECTOR”, 
“TRUNCATION_SELECTOR”. 

survivorsSelectorParameter The parameter passed 
to the chosen survivors 
selector. 

Object; depending on the chosen 
offspring selector, the parameter is 
either an integer or a double value 
with a different meaning. Some 
selectors do not require a parameter. 

mutator The alterer used to 
mutate individuals in a 
population. 

String/Enum; In the current 
implementation only the option 
“SWAP_MUTATOR” is supported. 
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Parameter Description Type 

mutatorAlterProbability The probability that an 
individual is selected for 
mutation. 

Number in the interval [0, 1[ 

offspringSelector The selector that serves 
to select the offspring 
that is kept in the 
evolutionary process. 

String/Enum; the following options are 
supported: “BOLTZMANN_SELECTOR”, 
“EXPONENTIAL_RANK_SELECTOR”, 
“LINEAR_RANK_SELECTOR”, 
“ROULETTE_WHEEL_SELECTOR”, 
“STOCHASTIC_UNIVERSAL_SELECTOR”, 
“TOURNAMENT_SELECTOR”, 
“TRUNCATION_SELECTOR”. 

offspringSelectorParameter The parameter passed 
to the chosen offspring 
selector. 

Object; depending on the chosen 
offspring selector, the parameter is 
either an integer or a double value 
with a different meaning. Some 
selectors do not require a parameter. 

terminationConditions The conditions that 
determine when the 
genetic algorithm stops. 

Map<String/Enum, Object>; as key, 
the following values are supported: 
“BY_EXECUTION_TIME”, 
“WORST_FITNESS”, 
“BY_FITNESS_THRESHOLD”, 
“BY_STEADY_FITNESS”, 
“BY_FIXED_GENERATION”, 
“BY_POPULATION_CONVERGENCE”, 
“BY_FITNESS_CONVERGENCE”. The 
type of the value depends on the 
selected termination condition and 
represents the parameter for the 
termination condition. 

 

The only recombination operator currently supported by the Heuristic Optimizer’s genetic algorithm 
module (not the Jenetics framework, which provides more implementations) is the partially matched 
crossover (PMX), which achieves good performance for the assignment problem. The only mutator 
currently supported by the module (again, Jenetics provides more) is the swap mutator. Regarding the 
choice of survivors and offspring selectors, the tournament selector is “often used in practice because 
of its lack of stochastic noise” and due to being “independent to the scaling of the genetic algorithm 
fitness function” [4, p. 13]. In preliminary experiments, some of the other selectors showed minimally 
better results on a first set of test data we employed for gauging the settings. In our experiments, 
however, we then focused on the tournament selector. 
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 Implementation 

We use the Jenetics framework to implement a genetic algorithm for the SlotMachine flight 
prioritization problem. Jenetics is a framework that facilitates the implementation of genetic 
algorithms. The Jenetics framework provides efficient encodings of common optimization problems 
and implements the most common recombination operators as well as selectors. The Jenetics 
framework’s flexibility would also allow for the easy extension with new representations, 
recombination operators, and selectors in the future if necessary for improving performance of the 
SlotMachine system. 

4.2.1 Structure 

Figure 7 illustrates the structure of the Heuristic Optimizer’s genetic algorithm module. The 
JeneticsOptimization class is an implementation of the abstract Optimization class using the 
Jenetics framework. The JeneticsOptimizationFactory, which is a specialization of the abstract 
OptimizationFactory class, creates an instance of JeneticsOptimization. The 
JeneticsOptimization class references a JeneticsOptimizationConfiguration, which is a 
specialization of OptimizationConfiguration with methods for setting the parameters of the 
genetic algorithm (see Section 4.1). The JeneticsOptimizationConfiguration determines how 
the Heuristic Optimizer runs the genetic algorithm to find solutions to the optimization problem. 
Internally, JeneticsOptimizationConfiguration employs a string–object map for storing the 
parameter values. This map can be passed to the create method of the OptimizationFactory 
class upon creation of the JeneticsOptimization instance.  

The JeneticsOptimization’s run method employs a genetic algorithm to solve a 
SlotConfigurationProblem – an implementation of the Jenetics framework’s Problem interface. 
An implementation of Problem comprises a definition of a fitness function and a codec. In case of the 
Heuristic Optimizer, the fitness function is not used in privacy-preserving mode (although the fitness 
function is used in non-privacy-preserving mode). The codec of the SlotConfigurationProblem 
corresponds to the Jenetics framework’s built-in mapping codec (Codec.ofMapping), which handles 
transformations between an efficient encoding of a flight list used by the genetic algorithm and the 
more natural representation as a mapping of flights to slots (Map<Flight, Slot>). 
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Figure 7. UML class diagram for initiating and running optimizations using the Jenetics framework 
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4.2.2 Creating and Initializing an Optimization 

Figure 8 illustrates the internal sequence of creating and initializing a JeneticsOptimization run. 
The JeneticsOptimizationFactory initializes the optimization with the flights and slots as well 
as a configuration, setting the parameters of the optimization specified in the optimization run’s 
configuration. Note that the computeWeightMap method of the Flight class is only invoked in case 
of non-privacy-preserving optimization runs. 

 

 

Figure 8. UML sequence diagram of the creation of an optimization run using the Jenetics framework 
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4.2.3 Running an Optimization 

Figure 9 illustrates the internal sequence of running a JeneticsOptimization. First, the 
JeneticsOptimization obtains an initial population of flight lists as input for the genetic algorithm. 
The JeneticsOptimizationConfiguration returns the initial population for the genetic 
algorithm. The initial population is chosen by assigning the flights to the available slots in the order of 
their originally scheduled time and then swapping neighbouring flights to obtain different flight lists. 
The flight lists are represented as mappings from flights to slots, which are encoded using the encode 
function of the SlotAllocationProblem’s codec. The JeneticsOptimization run then initiales 
the optimization run by building a Jenetics Engine instance with a BatchEvaluator instance as well 
as the SlotAllocationProblem’s encoding and constraint. 

 

 

Figure 9. UML sequence diagram of an optimization run using the Jenetics framework 
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Once started, the Jenetics EvolutionStream obtained via the engine continues until one of the 
termination conditions is met. In addition to the termination conditions specified via the optimization 
configuration, another termination condition is whether the thread of the optimization run has been 
interrupted. That way, the optimization run can be aborted via the REST interface at any time and will 
still terminate properly. 

 

 

Figure 10. UML sequence diagram of batch evaluation of a population of flight lists 

 

The Jenetics framework allows to implement a custom Evaluator class that takes over the evaluation 
of a population and can be passed to the engine. Figure 10 illustrates the internal sequence of 
evaluating a population using the BatchEvaluator class. The Jenetics evolution stream invokes the 
BatchEvaluator’s eval method for every generation. The eval method calls the 
PrivacyEngineService’s computePopulationOrder method, which establishes the connection 
to the Privacy Engine’s REST interface. The eval method then calls the concrete FitnessEstimator 
implementation indicated by the configuration to obtain a distribution of fitness values, which serves 
to assign each individual a fitness value in the privacy-preserving setting. After evaluation of the 
population, the optimization’s intermediate results and statistics are updated, which allows to obtain 
intermediate results and statistics at any time during the run via the REST interface. 
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5 Fitness Function 

A central component of a genetic algorithm is the fitness function, which allows to evaluate the 
individuals of a population of candidate solutions to an optimization problem. In SlotMachine, the 
privacy-preserving computation of the fitness of individuals requires a peculiar approach to 
implementing the fitness function for the employed evolutionary algorithm. In order to not disclose 
too much information about airspace users’ preferences, the Privacy Engine that computes the fitness 
values does not return an absolute fitness value for every individual in a population. Rather, the Privacy 
Engine returns the ranks of individuals within a population along with the maximum fitness value in 
the population. When such relative fitness values are available to the Heuristic Optimizer, a fitness 
estimator is used to obtain an approximate fitness value for each flight list. 

If the Heuristic Optimizer runs in privacy-preserving mode, the Heuristic Optimizer receives from the 
Privacy Engine only the rank of each solution within a population as well as the maximum fitness value 
within that population. The Heuristic Optimizer then uses a fitness estimator to obtain an approximate 
fitness value for each flight list in a population. Different approaches may be used to estimate the 
fitness of a flight list when given only the maximum fitness of the population and the rank of the flight 
list within the population. The Heuristic Optimizer provides implementations of linear, logarithmic, and 
sigmoid estimators but the architecture allows for easily extending the family of fitness estimators. In 
the following we briefly explain the intuition behind the provided implementations. 

A fitness estimator takes the population size and the maximum/minimum fitness as input and returns 
an array of the length of the population size as output. The array contains fitness values, which are 
ordered from highest to lowest. The distribution of the values follows a linear, logarithmic, or sigmoid 
function, depending on the type of fitness estimator used. In the current implementation, when 
estimating fitness values, the minimum fitness is assumed to be equal to twice the absolute value of 
the maximum fitness subtracted from the maximum fitness. Figure 11 shows example distributions of 
fitness values estimated using the implemented fitness estimators – linear fitness estimator, 
logarithmic fitness estimator, and sigmoid fitness estimator – with a population size of 500 as well as 
a maximum fitness of 540 000 and a minimum fitness of -540 000. The vertical axis shows the fitness 
value. The horizontal axis shows the different positions/ranks within a population. The diagram thus 
plots the estimated fitness of the ith individual in a population ranked by fitness value. 

The use of a fitness estimator represents a trade-off between information privacy and the quality of 
the result of the optimization algorithm. If absolute fitness values were returned by the Privacy Engine 
then it would be relatively easy to infer the confidential preferences submitted by the airspace users. 
Our experiments, however, suggest that the use of the fitness estimator does not have a considerable 
negative impact on the quality of the result of the optimization algorithm (see Section 6.2). The 
estimator that most closely resembles the real distribution seems to be the logarithmic estimator, 
although here further research may lead to improved implementations of fitness estimators. 
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Figure 11. Distribution of fitness values for different fitness estimators 
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6 Evaluation 

In this chapter we evaluate the implementation of the Heuristic Optimizer. First, we look at the 
implementation’s relation to the requirements. We then look at the results of experiments conducted 
using the Heuristic Optimizer. 

 Relation to Requirements 

In the following we discuss the design and implementation decisions regarding the Heuristic Optimizer 
in relation to the SlotMachine requirements identified in D2.1 – Requirements Specification [5]. During 
the design and implementation of the Heuristic Optimizer, we discovered also that some functional 
requirements should be adapted. 

Table 2. Requirements from D2.1 and their implications on the design of the Heuristic Optimizer 

Req. Description Design Implications 

perf_2 The solution shall support handling at least 
MIN_FLIGHT_NUMBER flights per flight 
prioritization session. 

Necessary requirement as you need at least 
two flights to swap. 

We conducted experiments with different 
scenarios involving up to 100 flights (see 
D4.1 and Section 6.2). The results of these 
experiments suggest good feasibility of a 
SlotMachine flight prioritization with 100 
flights. The result of those experiments, but 
also informal experiments during 
development, suggest good feasibility of 
optimization runs with even more flights 
since our experiments were conducted 
using a run time of up to 10 seconds only. In 
practice, even with the overhead of 
encryption, we expect considerably more 
time for conducting an individual 
optimization run. 

perf_3 The found flight prioritization solutions shall 
be MIN_EFFICIENCY % more efficient than 
the existing flight list provided by the 
Network Manager in terms of the 
preferences submitted by the airspace 
users. 

The SlotMachine system should provide a 
gain with respect to the existing systems in 
place, otherwise it would not be needed. The 
gain can be measured by comparing the 
overall utility of the baseline flight list with 
the flight list found by the SlotMachine using 

From the experiments with generated test 
data according to different scenarios (see 
Section 6.2 and D4.1 – State of the Art of 
Relevant Concepts) we know that the 
heuristic optimization finds solutions close 
to the optimum found by the non-
deterministic optimization algorithm. 
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Req. Description Design Implications 

the preferences (utilities of slots) submitted 
by the airspace users. 

perf_4 A flight prioritization session should last at 
most MAX_SESSION_DURATION minutes. 

Necessary requirement due to the 
synchronization process with the 
airport/airspace users, which takes some 
time. 

The Heuristic Optimizer allows to specify a 
time limit for an optimization run. In our 
experiments using the non-privacy-
preserving mode, we ran optimizations with 
a fixed time of 10 seconds, which already 
yielded good results with respect to the 
deterministic optimum. Even with the 
overhead of encryption and privacy-
preserving computation, a time limit 
imposed by operational constraints will 
likely not be a problem for running 
optimizations. 

perf_6 The Heuristic Optimizer shall finish the 
optimization after reaching a specified 
threshold in terms of fitness/utility of the 
found solution or after a specified amount 
of time has passed for the optimization 
session and return the best flight 
prioritization found until that point. 

See REQ perf_4. The optimization process 
cannot run forever and must return a result. 
The optimization algorithm must be chosen 
such that it will return a result no matter 
when it is aborted. 

The Heuristic Optimizer allows to specify a 
fitness threshold and/or a maximum run 
time as the criterion for finishing the 
optimization run. The Heuristic Optimizer 
also allows to specify other criteria for 
finishing an optimization run, e.g., when the 
found solutions do not improve in fitness 
any more. The implementation of the 
Heuristic Optimizer also supports aborting 
an optimization run at any time while still 
returning the best result obtained thus far. 
Furthermore, after each iteration step, the 
Heuristic Optimizer stores improved results 
in a cache, which allows to obtain 
intermediate results at any time. 

priv_3 The airspace user (AU) flight prioritization 
preferences shall remain confidential and 
protected from honest-but-curious 
platform operator individuals. 

The Heuristic Optimizer has a privacy-
preserving mode. In this mode, the Heuristic 
Optimizer calls the Privacy Engine for 
evaluating a population of solutions to the 
flight prioritization problem. The Privacy 
Engine does not return a fitness value for 
each solution sent by the Heuristic 
Optimizer. Rather, the Privacy Engine 
returns only the rank of each solution within 
a population submitted by the Heuristic 
Optimizer along with the maximum fitness 
within the population. 
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Req. Description Design Implications 

priv_4 The AU flight prioritization preferences shall 
be processed in encrypted/encoded form 
only in the platform. 

In privacy-preserving mode, the weights 
remain encrypted and are not read by the 
Heuristic Optimizer. 

priv_5 The internally used representation of AU 
flight prioritization by SlotMachine shall be 
securely derived from AU input for each 
flight prioritization and flight considered 
(e.g. weights). 

In privacy-preserving mode, the weights of 
flights are not processed by the Heuristic 
Optimizer. The Controller submits the 
encrypted weight maps directly to the 
Privacy Engine. 

co_4 The Controller shall call the Heuristic 
Optimizer to receive a ranked list of 
optimized flight prioritization based on the 
initial flight prioritization received from the 
NMF. 

When retrieving the results of an 
optimization run from the Heuristic 
Optimizer, the Controller may specify a 
limit, i.e., how many results should be 
returned. The number of available results 
depends on the specific settings of the 
evolutionary algorithm. For example, if the 
population size of the genetic algorithm is 
500 then up to 500 results are available but 
typically fewer since some of the found 
solutions will be duplicates. We expect, 
however, that for practical purposes there 
will be enough distinct solutions to find a 
flight list acceptable for all airspace users. 

ho_1 The Heuristic Optimizer shall evaluate each 
flight prioritization independently from 
other flight prioritizations. 

The Heuristic Optimizer uses fitness values 
of the flight lists found in one iteration step 
to determine how to modify the found 
solutions in the next iteration step. In order 
to protect the confidentiality of the slot 
preferences submitted by the airlines, the 
Privacy Engine does not return a fitness 
value for each individual flight list but only 
the maximum fitness of a population along 
with the ranks of the solutions within the 
population (relative fitness). The Heuristic 
Optimizer then estimates the fitness value 
of each individual flight list in a population 
of solutions. 

ho_2 The Heuristic Optimizer shall receive 
information about flights from the 
Controller. 

In the current implementation, the Heuristic 
Optimizer receives only the flight identifier 
and the scheduled time, which is required to 
determine invalid solutions; a flight shall not 
be planned for a slot earlier than the 
originally scheduled departure time, i.e., 
“the time on the ticket”. The Heuristic 
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Req. Description Design Implications 

Optimizer could be extended with a rule 
engine that uses additional information 
about flights, e.g., the size of the aircraft, to 
find better initial solutions. Based on the 
experiments conducted so far, we do not 
expect such more elaborate approach to 
finding initial solutions to be necessary in 
order to achieve good results. 

ho_3 The Heuristic Optimizer shall receive 
encrypted flight prioritization preferences 
of AUs from the Controller.  

We changed the design such that the 
Heuristic Optimizer does not receive any 
preferences regarding slots when running in 
privacy-preserving mode. Rather, the 
Controller submits the preferences directly 
to the Privacy Engine. In non-privacy-
preserving mode, the Heuristic Optimizer 
receives the preferences in unencrypted, 
plain form. 

ho_4 The Heuristic Optimizer shall receive public 
flight information from the Controller.  

See ho_2 

ho_5 The Heuristic Optimizer shall generate flight 
prioritizations under consideration of public 
flight information. 

See ho_2 

ho_6 The Heuristic Optimizer shall initialize a 
Privacy Engine session with encrypted flight 
prioritization preferences. 

The Controller initializes the Privacy Engine 
session. We deviate from the original 
requirement in order to keep the Heuristic 
Optimizer component more flexible. The 
Controller should take care of all 
administration issues while the Heuristic 
Optimizer’s focus is on providing the 
implementation of the evolutionary 
algorithm. The Controller submits the 
connection details of the employed and 
configured Privacy Engine instance to the 
Heuristic Optimizer. 

ho_7 The Heuristic Optimizer shall use Privacy 
Engine to evaluate fitness of generated 
flight prioritizations. 

The Heuristic Optimizer may run in privacy-
preserving or non-privacy-preserving mode. 
In privacy-preserving mode, the Heuristic 
Optimizer submits found solutions to the 
Privacy Engine for evaluation. 
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Req. Description Design Implications 

ho_8 The Heuristic Optimizer shall return a 
ranked list of flight prioritizations to the 
Controller.  

The Controller may specify how many flight 
lists should be returned by the Heuristic 
Optimizer upon retrieval of the results of an 
optimization run. The returned flight lists 
are ranked from best to worst. 

ho_9 The Heuristic Optimizer shall always return 
a solution, independent of the run time, 
meaning that an optimization can be 
aborted at any time and still return a valid 
result. 

See REQ perf_6. 

The Heuristic Optimizer caches a population 
of solutions found in an iteration step if the 
population’s best flight list is better than the 
best solution found thus far. Furthermore, if 
a genetic algorithm is used, the algorithm 
can be aborted at any time and still return a 
result. The implementation of the Heuristic 
Optimizer supports aborting the 
optimization run at any time (after the first 
iteration step has finished) while still 
returning a valid flight list. 

 Experiments 

In order to evaluate the impact of using the BatchEvaluator class with relative fitness values we 
conducted experiments with generated test data corresponding to different scenarios. We used the 
scenarios and test data from previous experiments, the results of which are reported in D4.1 – Report 
on State-of-the-Art of Relevant Concepts [9]. We refer to that document for additional experiment 
using the non-privacy-preserving prototype with different configurations of genetic algorithms and 
other heuristic local search algorithms, using absolute fitness values. 

6.2.1 Setup 

Table 3 lists the cases that are used for each selected optimizer configuration. The parameter no. of 
slots refers to the number of slots/flights that have to be matched. The parameter run time refers to 
the amount of time which the optimization algorithm is allowed to run; the optimization is stopped 
when the time is over and the best solution found up to that point is the optimization result. We refer 
to Chapter 6 of D4.1 [9] for a detailed explanation of the parameters concentration, priorities, and 
margins. Intuitively, an “even” concentration refers to cases where each flight desires a separate slot, 
which makes optimization trivial. An “extreme” concentration refers to cases where many flights 
desire the same few slots. A “moderate” concentration refers to cases where there are some overlaps 
between flights regarding the desired slots but the times wished are not concentrated on only a few 
slots. Priorities in the “middle” refers to cases where the flights with wished time slots in the middle 
of the available timeline of slots have generally higher priorities. Priorities at the “fringes” refers to 
cases where the flights with wished time slots at the fringes of the available timeline of slots have 
generally higher priorities. “Even” priorities refers to cases where all flights are equally important. 
Finally, “broad” margins refers to cases where the time window around the time wished is ± 25 
minutes, “normal” margins is ± 15 minutes, and “narrow” margins is ± 5 minutes. 
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Table 3. Cases used in experiments 

Case # Concentration Priorities Margins No. of Slots Run Time 

1 Even Middle  Broad 100 10 s 

2 Extreme Middle  Broad 100 10 s 

3 Moderate Middle  Broad 100 10 s 

4 Even Fringes  Broad 100 10 s 

5 Extreme Fringes  Broad 100 10 s 

6 Moderate Fringes  Broad 100 10 s 

7 Even Even Broad 100 10 s 

8 Extreme Even Broad 100 10 s 

9 Moderate Even Broad 100 10 s 

10 Even Middle  Normal 100 10 s 

11 Extreme Middle  Normal 100 10 s 

12 Moderate Middle  Normal 100 10 s 

13 Even Fringes  Normal 100 10 s 

14 Extreme Fringes  Normal 100 10 s 

15 Moderate Fringes  Normal 100 10 s 

16 Even Even Normal 100 10 s 

17 Extreme Even Normal 100 10 s 

18 Moderate Even Normal 100 10 s 

19 Even Middle  Narrow 100 10 s 

20 Extreme Middle  Narrow 100 10 s 

21 Moderate Middle  Narrow 100 10 s 

22 Even Fringes  Narrow 100 10 s 

23 Extreme Fringes  Narrow 100 10 s 

24 Moderate Fringes  Narrow 100 10 s 

25 Even Even Narrow 100 10 s 

26 Extreme Even Narrow 100 10 s 

27 Moderate Even Narrow 100 10 s 

 

For our experiments, we selected the three most promising genetic algorithm configurations from 
those investigated in D4.1 – Report on State-of-the-Art of Relevant Concepts [9]. Table 4 lists the 
parameters of the selected genetic algorithm configurations used in the experiments. The 
Configuration J1 corresponds to Configuration 2 in the experiments from D4.1, Configuration J2 
corresponds to Configuration 6, and Configuration J3 corresponds to Configuration 14. The maximal 
phenotype age was always 80, the offspring fraction 0.7. 

Table 4. Genetic algorithm configurations used in experiments 

Configuration Population 
Size 

Tournament 
Size 

Mutator Alter 
Probability 

Crossover Alter 
Probability 

J1 500 50 0.15 0.90 

J2 500 10 0.15 0.90 

J3 70 10 0.15 0.90 



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 32 
 

 

 

We ran the experiments on an OpenVZ virtual machine on a physical machine with an Intel Xeon CPU 
E5-2640 v4 with 2.40 GHz. The virtual machine had 8 GB of main memory and could use up to 40 cores 
of the physical CPU. The operating system of the virtual machine was CentOS Linux 7. The Java Virtual 
Machine ran with a heap size of 2 GB. We used OpenJDK 16 for running the Heuristic Optimizer. 

6.2.2 Results 

Our experiments were, on the one hand, aimed at finding out whether using an evolutionary algorithm 
with relative fitness values is a feasible approach and, on the other hand, which method for estimating 
fitness values works best given the information returned by the Privacy Engine. The benchmark for the 
genetic algorithm configurations is the Hungarian algorithm, which will find the optimal solution in 
terms of fitness but cannot be used together with the Privacy Engine. We first compare the different 
genetic algorithm configurations running with no estimator, i.e., computing an absolute fitness value 
for each individual in the population and using the absolute fitness value as the basis for finding new 
solutions, against the Hungarian algorithm. We then run the same genetic algorithm configurations 
using different types of fitness estimators; in those runs, the estimated fitness value serves as the basis 
for finding new solutions. 

Figure 12 summarizes the results of running optimizations with no estimator (using actual fitness 
values) for the different cases. Light green denotes cases where the respective configuration found a 
solution with 90% or more of the optimal fitness. Light yellow denotes cases where the respective 
configuration found a solution with between 80% and 90% of the optimal fitness. Light red denotes 
cases where the respective configuration found a solution with less than 80% of the optimal fitness. In 
general, the genetic algorithm configurations perform well. We note that in general, the genetic 
algorithm optimization works well. The cases where the best solution found by the genetic algorithm 
is less than 80% of the optimal fitness are those where a reasonably “good” solution cannot be found 
due to narrow margins given by the airspace users and/or concentrated airspace user preferences for 
only a few slots. In that case, the optimal solution is simply the “least bad” solution and in practice, in 
such situations, there might not even be a globally acceptable solution for airspace users anyway. We 
also note that in our experiments, the run time of the genetic algorithm was set rather low, with 10 
seconds. Longer run times may lead to improved solutions closer to the optimum. 

Figure 13 shows results of running genetic algorithm optimizations with the linear estimator, Figure 14 
shows the results of the optimizations with the logarithmic estimator, and Figure 15 shows the results 
of the optimizations with the sigmoid estimator. The results indicate that the use of an estimator does 
not considerably input the quality of the outcome of the optimization. Overall, we conclude that the 
proposed approach with a genetic algorithm and relative fitness values returned by the Privacy Engine 
is indeed feasible and can further be pursued. 

  



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 33 
 

 

 

 

 

 

Figure 12. Average/best fitness over five runs of various genetic algorithm configurations using no fitness 
estimator, i.e., evaluation through computation of absolute fitness. 
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Figure 13. Average/best fitness over five runs of various genetic algorithm configurations using a linear fitness 
estimator when maximum fitness of a population and a ranking of individuals within the population is known. 
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Figure 14. Average/best fitness over five runs of various genetic algorithm configurations using a logarithmic 
fitness estimator when maximum fitness of a population and a ranking of individuals within the population is 
known. 

 

  



D4.2 SPECIFICATION OF EVOLUTIONARY ALGORITHM  

 
SlotMachine!! 

  
 

 

 

 36 
 

 

 

 

 

 

Figure 15. Average/best fitness over five runs of various genetic algorithm configurations using a sigmoid 
fitness estimator when maximum fitness of a population and a ranking of individuals within the population is 
known. 

The fitness estimator aims to derive the fitness of the individual solutions in a population given the 
ranks of the solutions and the population’s maximum fitness value. We conclude that using a fitness 
estimator does not severely impact the performance of the genetic algorithm, demonstrating the 
general feasibility of the optimization process involving Heuristic Optimizer and Privacy Engine as 
proposed by the SlotMachine project. 

We implemented different estimators (see Chapter 5) and investigated how well the different 
estimators represent the real distribution of the fitness in a population. In the following we show the 
evolution of the actual and estimated fitness values of the configuration J1 in Case 9 and Case 20, 
respectively, used with the different estimators. The cases were selected for the following reasons. 
Case 9 with moderate concentration and wide margins is comparatively unproblematic regarding 
optimization. Case 20 is more challenging, with extreme concentration and narrow margins. 
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Figure 16. Evaluated fitness distribution in different generations of J1 applied to Case 9 using no estimator 

 

Figure 16 and Figure 17 show the evolution of the fitness distribution in a population for Case 9 and 
Case 20, respectively, using no fitness estimator, i.e., actual fitness values are used by the genetic 
algorithm. Each diagram plots the actual fitness value for the ith individual of a population ranked by 
fitness value. We conducted the runs with no estimator to have a comparison for the distributions 
returned by the estimators. 
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Figure 17. Evaluated fitness distribution in different generations of J1 applied to Case 20 using no estimator 
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Figure 18. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using 
linear estimator 

 

Figure 18 and Figure 19 show the evolution of the fitness distribution in a population for Case 9 and 
Case 20, respectively, using the linear fitness estimator. Since there are duplicate solutions in the 
population, the linear estimation is not perfectly linear but in the first half of the population decreases 
in steps. With Case 20, when the initial fitness is rather low, the estimator is a particularly bad 
reflection of the real distribution but also in general we note that the linear estimator is generallynot 
very accurate. 
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Figure 19. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20 
using linear estimator 
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Figure 20. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using 
logarithmic estimator 

 

Figure 20 and Figure 21 show the evolution of the fitness distribution in a population for Case 9 and 
Case 20, respectively, using the logarithmic fitness estimator. The logarithmic estimator seems to 
capture the real distribution best although the estimation of the minimum value was either too low 
(in the “good” Case 9) or too high (in the “bad” Case 20). 
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Figure 21. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20 using 
logarithmic estimator 
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Figure 22. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 9 using 
sigmoid estimator 

 

Figure 22 and Figure 23 show the evolution of the fitness distribution in a population for Case 9 and 
Case 20, respectively, using the sigmoid fitness estimator. The sigmoid estimator does not seem to 
accurately capture the real distribution of the fitness values. 
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Figure 23. Estimated and evaluated fitness distributions in different generations of J1 applied to Case 20 using 
sigmoid estimator 
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7 Conclusions 

The Heuristic Optimizer component of the SlotMachine system drives the optimization of flight lists. 
The privacy-preserving nature of the optimization process in the SlotMachine system means that a 
simple deterministic optimization algorithm cannot be employed. Rather, the Heuristic Optimizer 
employs an evolutionary optimization algorithm for finding solutions to the optimization problem and 
invokes the Privacy Engine for evaluation of the solutions. Nevertheless, even evolutionary algorithms 
cannot be readily employed. In order to preserve the confidentiality of the airspace users’ preferences, 
the Privacy Engine does not return fitness values for the entire population of flight lists found by the 
Heuristic Optimizer but only ranks the solutions and returns the maximum fitness within the 
population. This particular approach to evaluation of the population also requires a specific fitness 
function that use an estimator to derive fitness values for the individual flight lists in the population 
during the optimization runs. 

When implementing the Heuristic Optimizer we aimed for flexibility. Hence, the Heuristic Optimizer is 
a framework that allows to easily plug in different implementations of evolutionary algorithms. A 
genetic algorithm module has been implemented and can be used for privacy-preserving optimization 
runs in conjunction with the SlotMachine system. Non-privacy-preserving modules using other types 
of evolutionary algorithms and a deterministic algorithm, respectively, have also been implemented 
during an initial exploration phase (see D4.1 – Report on State of the Art of Relevant Concepts [9]). 
Those additional modules cannot (yet) be readily used together with the Privacy Engine although some 
of the employed local search algorithms could likely be adapted for use with the Privacy Engine. If 
further experimentation and validation activities in the SlotMachine project show that the current 
genetic algorithm implementation is insufficient an improved evolutionary algorithm module could be 
easily integrated into the general Heuristic Optimizer framework. 
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Appendix A T    -P   y L b       
 

Table 5 lists the directly used third-party libraries. Those libraries use also additional libraries, which 
are not listed here. We refer to the documentation of those libraries for any additional dependencies. 

Table 5. List of third-party libraries 

Library Version License Purpose 

Spring Boot 2.4.3 Apache License 2.0 The Spring Boot framework is used to realize 
the REST interface of the Heuristic Optimizer. 

Springfox 2.6.1 Apache License 2.0 The Springfox framework generates a Swagger 
documentation for the REST interface. 

Jenetics 6.3.0 Apache License 2.0 The Jenetics framework facilitates the 
implementation of genetic algorithms. 

OptaPlanner 8.14.0.Final Apache License 2.0 The OptaPlanner framework provides 
implementations of common local search 
algorithms. 

Log4J2 2.17.0 Apache License 2.0 The Log4J2 framework provides logging 
capabilities. 
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