
Privacy-Preserving Implementation of Local Search
Algorithms for Collaboratively Solving Assignment

Problems in Time-Critical Contexts
Kevin Schuetz

Johannes Kepler University Linz
Linz, Austria

ORCID: 0000-0003-1569-0342

Christoph G. Schuetz
Johannes Kepler University Linz

Linz, Austria
ORCID: 0000-0002-0955-8647

Samuel Jaburek
Johannes Kepler University Linz

Linz, Austria
jaburek@dke.uni-linz.ac.at

Abstract—Solving real-world optimization problems often re-
quires collaboration among multiple stakeholders. In air traffic
flow management, for example, airlines must work together
to prioritize individual flights in cases of reduced capacity
in the air traffic network. However, when diverse parties are
required to share sensitive information to collaboratively conduct
optimization, trust becomes an issue. To alleviate those issues,
privacy-preserving computation can be utilized to protect the
confidential information of participants, which comes with a
trade-off in terms of runtime performance. In time-critical
contexts, privacy-preserving implementations of deterministic
optimization algorithms may not be able to produce a result
before the deadline. In this paper, we investigate the effectiveness
of using variants of local search algorithms for the search of
solutions to an optimization problem in conjunction with multi-
party computation for the evaluation of those solutions. We argue
that the proposed method using local search algorithms achieves
good results in terms of the quality of the found solution while
considerably reducing the run time with respect to a privacy-
preserving deterministic solution.

Index Terms—combinatorial optimization, heuristics, multi-
party computation

I. INTRODUCTION

Conducting optimization often requires collaboration among
multiple stakeholders who must provide inputs for the opti-
mization algorithm. For example, in supply chain planning,
suppliers, manufacturers, logistics providers, and customers
must collaborate to improve business performance [1]. In air
traffic flow management (ATFM), airlines must collaborate
when prioritizing flights to minimize delay costs in cases of
reduced capacity in the air traffic network [2], which is an
example of the linear assignment problem.

When diverse parties with vested interests are required
to share sensitive information, e.g., costs, to collaboratively
conduct optimization, trust becomes an issue. Participants in
the optimization often want to conceal their preferences from
other participants. If a third party provides a platform for
conducting the optimization, sensitive information should be
protected from an honest-but-curious platform provider or any
intruders to the system.

Privacy-preserving computation that protects the confiden-
tial information of participants may alleviate trust issues when
collaboratively conducting optimization. Multi-party computa-
tion with secret sharing, for example, distributes the computa-
tion to multiple servers, where no server alone can decrypt the
private inputs, and no trusted party conducts the optimization.
Privacy protection, however, comes with a trade-off in terms
of runtime performance.

In time-critical contexts, privacy-preserving implementa-
tions of deterministic optimization algorithms may not arrive
at a solution within the deadline. In such contexts, the “cor-
rectness of a computation depends not only on the logical
correctness but also on the time at which the results are
produced” [3, p. 6]. Thus, a “software routine implementing
the functionality of a task should complete its execution
before the task deadline” [4, p. 8]. For example, in ATFM,
flight prioritization in situations of reduced capacity must
be finished within a relatively narrow time window [5] in
order to allow for the operational changes to take effect and
a compensation mechanism to be executed before the first
flight’s departure/arrival time [6].

In contrast to deterministic algorithms, evolutionary opti-
mization algorithms can be terminated anytime and still yield
a valid result, which makes them an ideal choice in a time-
critical setting. Furthermore, previous work has demonstrated
the relative efficiency of adopting a distributed architecture for
privacy-preserving optimization [5] that employs evolutionary
algorithms (in form of genetic algorithms) for the search of
candidate solutions and MPC protocols for the evaluation
of those candidate solutions when compared to an MPC
implementation of deterministic algorithms [7].

In this paper, we investigate the potential of using local
search algorithms for solving linear assignment problems
in a privacy-preserving manner, building on the distributed
architecture proposed by Schuetz et al. [5]. Local search
algorithms employ an iterative approach to improve an existing
solution by comparing the solution’s quality with that of
neighboring solutions, which are defined as solutions that
differ only slightly from the existing solution [8]. In particular,
we investigate the use of different variants of well-known979-8-3503-1458-8/23/$31.00 ©2023 IEEE

local search algorithms, which can be considered a kind of
evolutionary optimization algorithm (cf. Simon [9]), instead
of genetic algorithms for the search of candidate solutions.
We show how to adapt existing local search algorithms and
investigate the performance of those algorithms when using
limited information regarding the fitness of the found solu-
tions. We conduct experiments using realistic datasets from a
real-world use case in ATFM [2].

The remainder of this paper is organized as follows. Sec-
tion II provides background information regarding a real-world
application in ATFM and relevant concepts in multi-party
computation; Section II-C reviews related work. Section III
introduces the framework for the privacy-preserving opti-
mization with local search algorithms. Section IV describes
the experimental setup, Section V the experimental results.
Section VI discusses the framework and the experimental
results. Section VII concludes the paper.

II. BACKGROUND

In this section, we describe a real-world application of
privacy-preserving optimization of assignments in the domain
of air traffic flow management (ATFM) before summarizing
the fundamentals of multi-party computation. We also review
related work.

A. Real-World Application in Air Traffic Flow Management

Temporarily reduced capacity in the air traffic network
and the ensuing congestion at airports are a major reason
for flight delays, which result in additional costs for the
operating airlines in terms of both cash flows and reputation
with passengers. Different flights incur different (amounts
of) costs when experiencing delay. Some flights can more
easily tolerate additional delay, whereas other flights have
more critical delay targets. Consequently, cost savings could
be achieved by prioritizing flights according to their individual
cost functions. To achieve the best result, such optimizations
should be conducted across airlines, with each airline sharing
its preference regarding the optimization. Airlines, however,
are typically wary of sharing their preferences, which may
allow to infer conclusions about an airline’s cost structures,
which in turn is confidential information for the airlines. We
refer to Schuetz et al. [5], Gringinger et al. [6], and Schuetz
et al. [2] for further information.

The SlotMachine project [10] aimed to develop a platform
for privacy-preserving optimization of flight lists; we build
on that project’s proposed distributed architecture for our
implementation and use that project’s published datasets for
our experiments. The optimization of flight lists can be seen
as an assignment problem, where a mapping between two sets
of items—flights and slots—must be found. If there are as
many slots as flights—the SlotMachine project considered this
case— the problem is a balanced linear assignment problem
(see Section III-A for a more formal definition). The optimiza-
tion may be coupled with a market mechanism that serves to
promote equity and fairness regarding slot assignment over
time [11]. In the SlotMachine project, airlines state their

preferences regarding the optimization in terms of a preferred
slot and “margins”, i.e., the earliest slot time and the latest
slot time to be assigned (see [2] for more information). Those
preferences are then translated into a weight map.

B. Multi-Party Computation

Privcacy-preserving computation performs computations in
a way that protects the confidentiality of private input data
without the need of a trusted third party. Different techniques
enable privacy-preserving computations, e.g., MPC with se-
cret sharing, homomorphic encryption, and zero-knowledge
proofs. We refer to Cramer et al. [12] for a comprehensive
introduction into the topic. According to Zhao et al. [13], MPC
allows distributed computation of arbitrary functionality with-
out requiring the participating parties to reveal their private
inputs or outputs. Loruenser et al. [7] employ MPC and zero-
knowledge proofs as a facilitator to guarantee that no central
trusted authority is required and that the output is publicly
verifiable. MPC comes with a certain performance penalty,
which means that there is a trade-off between confidentiality
and performance. The calculations are performed by MPC
nodes, with each node being under the control of a different
participant. Each MPC node receives a share of the inputs.
Loruenser et al. [7] also encrypt each share using the public
key of the MPC node that receives that share.

C. Related Work

Sakuma et al. [14] propose an MPC protocol for privacy-
preserving combinatorial optimization using local search and
genetic algorithms, the distributed traveling salesman problem
being an example. Han et al. [15] use a similar architecture,
combining MPC with genetic algorithms to facilitate rule
discovery in data mining. Both works disclose the results of the
cost function—Sakuma et al. [14] reveal the relative ordering
of the individuals of a population whereas Han et al. [15]
reveal absolute fitness values.

Liu et al. [16] emphasize that attackers in the context of
optimization are interested in relative rankings rather than
exact objective values. Therefore, Liu et al. [16] propose a
federated data-driven optimization framework based on the
Diffie-Hellman-assisted secure aggregation. Funke et al. [17]
also highlighted that not only cost function evaluation has
the potential to leak private input data, but that the selec-
tion of individuals from the population also threatens the
confidentiality of the input data. Funke et al. [17] propose
a technique based on additive-homomorphic encryption that
does not reveal intermediate results of a privacy-preserving
genetic algorithm. However, Schuetz et al. [5] highlight that
the presented results are not immediately transferrable to the
assignment problem or any other optimization problem.

Schuetz et al. [5] propose a system that evaluates the objec-
tive function of a genetic algorithm using MPC to solve the
assignment problem of optimizing flight sequences in ATFM,
which could also be adapted to other assignment problems in
other domains. Schuetz et al. [5] propose different obfuscation
methods to disguise actual fitness values. In our paper, by

switching from genetic algorithms to local search algorithms,
we propose an improvement to this system that enhances
security of private input data and performance, leaking less
information regarding the dominance of individuals when
conducting an optimization.

III. FRAMEWORK

We now define the optimization problem and describe the
general framework for privacy-preserving optimization. We
then discuss methods for obfuscation of fitness, the specific
local search algorithms that were considered in this paper, and
the implementation of those algorithms.

A. Problem Formulation and Execution Model

Let us first define the notion of assignment and the cor-
responding optimization problem; the following definitions
regarding assignments and assignment problems are based
on Burkard et al. [18]. An assignment maps n items of
one kind (e.g., flights) to n items of another kind (e.g.,
departure slots). In terms of graph theory, given a bipartite
graph G = (U, V ;E), where the disjoint sets of vertices U
and V represent the items to be mapped, and the set of edges
E ⊆ U×V defines possible mappings between elements from
U and V , an assignment is a matching M ⊆ E, which maps
every u ∈ U to exactly one v ∈ V and no v ∈ V to more
than one u ∈ U . In a balanced assignment problem, which
we consider in the following, the number of items in U is
equal to the number of items in V , i.e., |U | = |V |, and an
assignment then is a perfect matching M ⊆ E. An injective
weight function c : E → R then defines a weight (e.g., costs
or utility) for each possible mapping, which allows to compare
the fitness of different assignments.

An alternative representation of an assignment is the per-
mutation matrix [18, p. 1], which lends itself to the imple-
mentation using MPC [7]. Thus, in an n × n permutation
matrix X = (xij) for a balanced assignment problem where
|U | = |V | = n, and the sets U and V are ordered, the element
xij = 1 if, and only if, the i-th item of the set U maps to
the j-th item of the set V , and otherwise xij = 0, for all
i, j ∈ {1, . . . , n}. The sum of each row in the permutation
matrix is 1. The weight function c then becomes a weight
matrix C = (cij), where each row comprises the weights of
assigning the i-th item of the set U to the j-th item of the set
V , for all i, j ∈ {1, . . . , n}.

An optimization problem requires an objective function.
Given an n × n permutation matrix X = (xij) and an
n × n weight matrix C = (cij), where each cij represents
the utility of the corresponding xij , the following objective
function characterizes a linear sum assignment problem aiming
to maximize the utility (fitness) of the assignment.

max
n∑

i=1

n∑
j=1

xijcij

In a collaborative setting, k participants work together
to solve an optimization problem characterized by G =
(U, V ;E), where each participant controls a set of items

Local Search

Algorithm

Privacy Engine

Pi (xi , fi)

Participants
Participants

Participants

(U, V, E)

encrypt (C)

M

Fig. 1. Framework for privacy-preserving optimization

Ui ⊆ U , for every i ∈ {1, . . . , k}, the sets U1, . . . , Uk being
pairwise disjoint. Each participant then contributes one or
more rows of the weight matrix C as input to the optimization
algorithm, indicating the respective participant’s preferences
regarding the optimization.

To preserve the confidentiality of the participant’s prefer-
ences regarding the optimization, each participant encrypts
their contributed rows of the weight matrix C, and the op-
timization algorithm employs a Privacy Engine to compute
the fitness of different assignments in a privacy-preserving
manner. Technology-wise, such privacy-preserving computa-
tion can be enabled via homomorphic encryption, which allows
to perform computations over ciphertexts [19], or via secret
sharing and MPC protocols (see Section II-B). Using MPC,
each participant secret-shares their contributed rows of the
weight matrix C, obtaining m shares of each row with the
same number of columns as C, one share for each of the
m MPC nodes actually conducting the computations. Each of
those shares is also encrypted with the public key of the MPC
node that receives the respective share. The Privacy Engine
only coordinates the computations conducted by the MPC
nodes, which are controlled by different entities and cannot
decrypt the private inputs submitted by the participants.

Figure 1 illustrates the generic framework for privacy-
preserving optimization using local search algorithms, based
on the distributed architecture proposed by Schuetz et al. [5],
which employs genetic algorithms in conjunction with MPC.
The local search algorithm looks for candidate solutions,
receiving public information regarding the items to be mapped
(U and V) and any constraints over non-private inputs, which
are formally represented by the set of possible mappings E,
from the participants in the optimization run. The encrypted
preferences for the optimization, i.e., the secret-shared weight
matrix C, are used for the privacy-preserving evaluation of
the fitness of the submitted solutions, which the Privacy
Engine orchestrates. The participants receive as the result
from the local search algorithm the assignment (M). We refer
to Schuetz et al. [5] as well as Loruenser et al. [7] for
more information regarding the implementation of the Privacy
Engine using MPC and focus on the local search aspects in
the following.

The actual optimization is an iterative process conducted
by a local search algorithm in conjunction with the Privacy
Engine, thus separating the search for candidate solutions from
the evaluation of the fitness of those candidate solutions. In

each iteration, the local search algorithm submits a population
of candidate solutions to the Privacy Engine for evaluation and
receives a selected solution and a fitness value as the result.
The selected solution and the fitness value are the basis for
generating an altered population in the next iteration.

Algorithm 1 illustrates the general principle of local search
algorithms for privacy-preserving optimization, the notation
following the example of Simon [9]. The requires the set of
possible mappings between U and V as well as a neighbor-
hood function h(x) : E → P(E) as input, with P(E) the
set of all subsets of E. Given a candidate solution x (an
assignment), h(x) returns the set of other solutions that are
similar to x, i.e., the neighborhood of x. The neighborhood of
x consists of all solutions that can be obtained from x via a
local transformation, which in the current implementation are
those solutions that can be obtained from x by swapping the
mapping of two elements from U , similar to a 2-Exchange (or
2-Opt) neighborhood for the traveling salesman problem [20].
The algorithm first initializes a solution x0, which can be the
original solution (if available), a randomly generated solution,
or a solution generated using construction heuristics. This
solution x0 becomes the value of x, with f set to −∞. Then,
until a termination criterion is fulfilled, in each step i, the
algorithm selects a set Pi from the neighborhood of x, submits
that set to the Privacy Engine for evaluation, and receives one
solution xi from Pi along with a fitness value fi. From an
optimization perspective, the returned xi ideally is the solution
with the best fitness in the neighborhood and fi that solution’s
actual fitness. Depending on the obfuscation method—aimed
at reducing leakage of information regarding private inputs
(see Section III-B)—xi may only be among the best solutions
in the neighborhood, and fi may only be the average fitness
of the best solutions. Based on fi and the current value of f ,
the local search algorithm decides whether to update x with xi

and f with fi for the next iteration step; otherwise, x remains
unchanged and another set Pi+1 from the neighborhood h(x)
is selected in the next step. When the termination criterion
is fulfilled the algorithm returns the encountered solution xj

where the corresponding fj was maximal.

B. Obfuscation Methods

To enhance the protection of private inputs, various obfusca-
tion methods can be employed to conceal the true fitness value
and the dominance of a solution—i.e., the relative fitness of
a solution with respect to other solutions in a population—
returned by the Privacy Engine. The obfuscation method de-
termines the process for selecting the solution xi ∈ Pi returned
by the Privacy Engine and obtaining the corresponding fitness
value fi. Figure 2 illustrates the principle of the different
obfuscation methods.

The goal is to ensure that the local search algorithm is
capable of finding good solutions while ensuring the con-
fidentiality of sensitive input data by limiting the amount
of information disclosed to the local search algorithm. The
obfuscation method best serves as the baseline, revealing
the most information regarding fitness and dominance of the

Algorithm 1: Generic local search algorithm

1 E = the set of possible mappings between U and V
2 h(x) = a neighborhood function: h(x) : E → P(E)
3 Initialize a candidate solution x0 ⊆ E
4 x← x0

5 f ← −∞
6 i← 1
7 while not(termination criterion) do
8 Select a set Pi of candidate solutions from the

neighborhood h(x)
9 Obtain a solution xi ∈ Pi and a corresponding

fitness value fi from the Privacy Engine
10 if xi is accepted given fi and f then
11 x← xi

12 f ← fi
13 end
14 i← i+ 1
15 end
16 return solution xj ∈ {x1, . . . , xn} where fj is max

solution xi returned by the Privacy Engine: In each iteration,
the Privacy Engine returns a solution xi ∈ Pi such that
∄x′

i ∈ Pi where fitness(x′
i) > fitness(xi), and the returned

fitness value fi is fitness(xi).
The obfuscation methods top and above conceal fitness

value and dominance of the solution xi returned by the Privacy
Engine. Both methods construct a set P ′

i ⊆ Pi comprising
the best solutions in a population Pi. For both methods, a
threshold 0 < t < 1 has to be defined, which determines the
size of P ′

i . For method top, t denotes the number of individuals
relative to the size of Pi that are included in P ′

i . For example,
if |Pi| = 100 and t = 0.05 then P ′

i consists of the five
best solutions in Pi. For method above, t denotes the fitness
threshold relative to the maximum fitness value in Pi that
qualifies a candidate solution for inclusion in P ′

i . For example,
if the maximum fitness in a population Pi is 100 and t = 0.95
then P ′

i = {x ∈ Pi : fitness(x) ≥ 95}. For both methods,
the condition ∀x′ ∈ P ′

i : ∄x ∈ Pi : x /∈ P ′
i ∧ fitness(x) >

fitness(x′) is true. An additional constraint for method above
requires that P ′

i is composed of at least three elements, which
can be satisfied by dynamically lowering the threshold for an
iteration if necessary.

Given a set P ′
i constructed by the obfuscation methods top

and above, the Privacy Engine returns a randomly chosen xi ∈
P ′
i to the local search algorithm. The returned fitness value fi

is set to the average fitness values of the solutions in P ′
i , i.e.,

fi =
1

|P ′
i |

∑
x∈P ′i

fitness(x).

When using the obfuscation methods top and above, it
is impossible to infer neither the actual fitness value of
any given solution nor the dominance of one solution over
another solution. Furthermore, given two distinct (but possibly
overlapping) populations Pi, Pj ⊆ E as well as the solutions

Fig. 2. Illustration of obfuscation methods. Note that rank and fitness values
of the individual solutions in a population are known neither to the local search
algorithm nor to the Privacy Engine but the computations are conducted by
multiple MPC nodes together, no single node knowing the private inputs.

xi ∈ Pi and xj ∈ Pj returned by the Privacy Engine for the
respective populations, dominance of xi over xj cannot be
inferred with certainty even if fi > fj .

The choice of obfuscation method also influences the com-
plexity of the MPC computations. Schuetz et al. [5] report that
ranking candidate solutions in MPC is time-intensive since
ranking requires many iterations and cannot be parallelized
whereas collecting the candidate solutions into buckets based
on fitness value is comparatively faster. Of the proposed
obfuscation methods, only the method top requires ranking the
solutions in a population. For methods best and above, find-
ing out the maximum fitness and comparing each solution’s
individual fitness to that maximum fitness suffices.

C. Local Search Algorithms

We selected five popular local search algorithms and
adapted them for use in the proposed framework. The algo-
rithms follow a best improvement strategy as opposed to a
first improvement strategy, i.e., the algorithm selects the best
solution of the neighborhood—or, in our case, an approxima-
tion thereof—rather than the first solution to be an improve-
ment [20, p. 193]. Algorithms following a first improvement
strategy cannot be used in the proposed framework since the
population Pi that is submitted to the Privacy Engine in each
iteration must contain a minimum number of distinct candidate
solutions to ensure the protection of privacy of the input data
as well as to reduce the overhead caused by communication
between local search algorithm and Privacy Engine.

In the following, we briefly introduce the implemented al-
gorithms. The candidate solution and the fitness value returned
by the Privacy Engine in any given iteration are denoted with
xi and fi, respectively. Likewise, the current reference solution
and the associated fitness value are denoted with x and f . For
all algorithms, f ← fi if and only if x← xi. The algorithms
differ with regard to the conditions for updating the current
reference solution x.

1) Hill Climbing (HC): This algorithm updates the current
solution x with the returned candidate solution xi if and only
if fi ≥ f . Therefore, HC would not even require disclosure
of actual or obfuscated fitness values at all, as the disclosure
of the result of the evaluation of the condition (a boolean
expression) to the local search algorithm would suffice.

Algorithm 2: Simulated annealing

1 E = the set of possible mappings between U and V
2 h(x) = a neighborhood function: h(x) : E → P(E)
3 α(t, i) = a cooling function: α(t, i) : R>0 × N→ R>0

4 t0 = an initial temperature > 0
5 Initialize a candidate solution x0 ⊆ E
6 x← x0

7 f ← −∞
8 t← t0
9 i← 1

10 while not(termination criterion) do
11 Select a set Pi of candidate solutions from the

neighborhood h(x)
12 Obtain a solution xi ∈ Pi and a corresponding

fitness value fi from the Privacy Engine
13 if fi ≥ f then
14 x← xi

15 f ← fi
16 else
17 Choose a random number r ∈ [0, 1]

18 if r < e
−
f − fi

t then
19 x← xi

20 f ← fi
21 end
22 end
23 i← i+ 1
24 t← α(t, i)
25 end
26 return solution xj ∈ {x1, . . . , xn} where fj is max

2) Step Counting Hill Climbing (SCHC): This algorithm
is a threshold local search algorithm [20, p. 433] where a
candidate solution xi is also accepted if fi ≥ t, where t
denotes a threshold in terms of an absolute fitness value. Every
n iterations, t is updated with the current value of f .

3) Great Deluge (GD): Another threshold local search
algorithm, GD raises t every iteration by a fraction of the first
fitness value returned by the Privacy Engine, i.e., f1, unlike
with SCHC, where t is updated periodically.

4) Simulated Annealing (SA): Algorithm 2 shows a basic
algorithm for simulated annealing based on Simon [9, p. 226].
The algorithm requires as input an initial temperature t0 and
a cooling function α : R>0 × N → R>0, which returns a
new temperature depending on the current temperature t and
iteration number i. If the fitness fi returned by the Privacy
Engine is less than the fitness of the current reference solution,
the returned solution xi may still be considered to replace
the current reference soltuion: A random number r ∈ [0, 1]
is generated and compared to the degree of deterioration of
the current temperature. After each iteration, t is lowered
according to the cooling function.

5) Tabu Search (TS): Our TS implementation accepts any
candidate solution xi returned by the Privacy Engine as long as

xi /∈ T or fi ≥ f , where T is the tabu list. After each iteration,
the tabu list is expanded by the population, i.e., T ← T ∪Pi. If
the size of T exceeds a configurable maximum size the oldest
elements are removed from the list.

D. Implementation

We implemented the privacy-preserving variants of the
described local search algorithms by modifying the source
code of Version 8.14 of the OptaPlanner framework1 [21].
OptaPlanner is a framework for constraint satisfaction solving
using optimization algorithms to find solutions to planning
problems, including assignment problems, but also other prob-
lems such as the traveling salesman problem and the knapsack
problem, for example. OptaPlanner is written in Java and
released under an open-source license; the development is
sponsored by RedHat.

We adapted OptaPlanner by adding an interface for the
evaluation of candidate solutions, which can be used to in-
tegrate the Privacy Engine into the optimization process2. The
modified OptaPlanner library was integrated into the Heuristic
Optimizer component of the SlotMachine platform [5], the
source code of which is available online [23]3, providing
a REST endpoint for initializing and starting optimizations.
The PE was simulated for the experiments since the focus of
this paper is on the evaluation of the performance of local
search algorithms when using limited information regarding
the fitness of candidate solutions.

IV. EXPERIMENTAL SETUP

In the following, we describe the experimental setup for the
investigation of the performance of local search algorithms.
We first describe the datasets before presenting the different
employed configurations of the algorithms and the metrics
used to evaluate performance.

A. Datasets

For the evaluation of privacy-preserving local search algo-
rithms, we employ datasets from the real-world use case of
flight prioritization in ATFM (see Section II-A) published by
the SlotMachine project [23]. Those datasets can be divided
into three groups.

The first group comprises 27 datasets (Datasets 1–27) with
100 flights each, simulating different scenarios regarding the
margin width, the concentration of the time wished, and the
priorities. Those datasets were generated using the dataset
generator published by the SlotMachine project. We refer to
Schuetz et al. [25] for more detailed description of those
scenarios.

The second group comprises 20 datasets (Datasets 28–47)
that were generated based on preliminary samples of real-
world preferences provided by an airline [25]. Among this
group of datasets, there are datasets with 100 flights (Datasets

1https://www.optaplanner.org/
2The source code can be found online [22].
3The source code of the adapted component can also be found online [24].

28-37) and 150 flights (Datasets 38-47). We employ the same
datasets used by Schuetz et al. [5].

The last group of datasets comprises 10 datasets (Datasets
48-57), which were generated by the SlotMachine project
based on more extensive, refined samples of real-world pref-
erences provided by an airline [23].

B. Configurations

In addition to looking at the performance of different algo-
rithms and fitness methods, we chose the size of the population
as a parameter for the experiments. For every combination of
algorithm and fitness method, one configuration with a small
population size of 100, and another configuration with a larger
population size of 250, were included in the experiments.
Overall, we considered 30 configurations.

Due to the non-deterministic nature of some of the algo-
rithms and fitness methods, we conducted three optimization
runs of each configuration over each dataset. All experiments
were configured to terminate after 500 iteration steps, or when
the optimal solution, which was returned by the Hungarian
algorithm, was found.

In the following, we describe the values of the parameters
specific to the presented algorithms (see Section III-C) and
obfuscation methods (see Section III-B), respectively.

For SCHC, n was 10, so that t← f every 10 iterations. For
GD, the fraction of f1 that t increases was 0.005, so that after
every iteration t ← t + (f1 × 0.005), where f1 is the fitness
value returned by the Privacy Engine in the first iteration. For
SA, the starting temperature t0 was 1000. For TS, the size of
the tabu list was also 1000.

For the fitness method above, t was 0.995, considering that
the observed range of fitness values of any given population
Pi in preliminary tests tended to be quite narrow due to the
similarity of the candidate solutions. For the fitness method
top, t was 0.03.

C. Metrics

We were mainly interested in the fitness of the solution
found after 500 iterations using a certain configuration of
local search algorithm relative to the fitness of the optimal
solution found by the deterministic Hungarian algorithm [26]
for the same dataset. Furthermore, we were interested in the
convergence of the local search algorithms. Thus, we looked
at the relative fitness of the solutions returned in each iteration
step to determine a number of iterations after which reasonably
good solutions are found.

V. EXPERIMENTAL RESULTS

In this section, we summarize the results of the performance
experiments4 introduced in Section IV. We present a com-
parison of the results regarding the investigated algorithms
(see Section III-C), the fitness methods (see Section III-B),
and the size of the population. Configurations of algorithm,
obfuscation method and population size are denoted using the
following schema: (algorithm, obfuscation-method, population

4The datasets and experimental results can be found online [27].

size). For example, (HC, best, 250) denotes a configuration
with the algorithm HC, the obfuscation method best, and
a population size of 250. Whenever results are aggregated
over different configurations, we use “ ” as a wildcard. For
example, (HC, ,) means that the results are aggregated over
all configurations that use the algorithm HC.

A. Performance

1) Algorithms: The experiments have shown that the choice
of algorithm has a rather small effect on the quality of the
solutions. The average relative fitness values over all datasets
ranged from 94.30% for (HC, ,) to 96.18% for (SCHC, ,),
with an average over all datasets and configurations of 95.35%.
Table I summarizes the results analyzed by algorithm.

2) Obfuscation methods: Regarding the employed obfusca-
tion method, the results have shown that (,best,) on average
finds solutions with considerably higher relative fitness values
than the other methods, with an average relative fitness value
of 99.17%. This result is expected, as best is the only fitness
method that guarantees to disclose the candidate solution with
the highest actual fitness value in every iteration (see Sec-
tion III-B). However, although best discloses more information
about dominance of candidate solutions, when paired with
algorithms like HC or TS this obfuscation method could still
be realized without revealing actual fitness values to the LSA.
Table II summarizes the results by obfuscation method.

3) Population size: A larger population size tends to yield
better solutions given after a fixed amount of iterations.
However, the difference of the average relative fitness is less
than 1% point, and a trade-off between the quality of the result
solution and the run time has to be taken into account with
regards to the cardinality of P . Table III shows the results.

Figure 3 plots the mean relative fitness value for each
dataset per algorithm, obfuscation method, and population
size, respectively. This also hints at the difficulty of the three
different groups of datasets (see IV-A).

4) Outliers: Even with an average relative fitness over all
datasets of 95.35%, one optimization that was executed as
part of the experiments marked the minimum with a relative
fitness value of 63.64%. This result was obtained in the first
repetition of the Dataset 51 with the configuration (SA, top,
250). However, the result does not seem to be due to the
difficulty of this dataset, as the average relative fitness value
for this dataset is 92.27%, with 22.81% of all datasets having
an average relative fitness value below that fitness. Compared
to that, (SA, top, 250) reached an average relative fitness over
all repetitions for this dataset of 76.27%, with the maximum
being 85.04%. The following analysis by configuration will
confirm that especially the obfuscation method top combined
with a population size of 250 lead to an increased dispersion
of the achieved fitness values.

5) Variance: Table IV shows the average relative fitness
values over all datasets for all 30 configurations. The best
solutions were found with the configuration combining the
algorithm TS with the fitness method best and a population

TABLE I
MEAN AND MINIMUM RELATIVE FITNESS OF SOLUTIONS FOUND BY

EACH ALGORITHM (IN % OF THE OPTIMAL SOLUTION’S FITNESS)

Mean Min

Hill Climbing (HC) 94.30 71.46
Step Counting Hill Climbing (SCHC) 96.18 80.70
Great Deluge (GD) 95.87 79.77
Simulated Annealing (SA) 94.57 63.64
Tabu Search (TS) 95.85 79.74

TABLE II
MEAN AND MINIMUM RELATIVE FITNESS OF SOLUTIONS FOUND

USING DIFFERENT METHODS FOR FITNESS OBFUSCATION
(IN % OF THE OPTIMAL SOLUTION’S FITNESS)

Mean Min

best 99.17 95.60
top 94.58 63.64
above 92.32 74.32

size of 250. This is in line with the general observations
presented in Section V-A.

For real-world applications, consistency may be as impor-
tant as average performance. The standard deviations of the
average mean fitness values of the datasets for the obfuscation
methods best, above, and top5, are 0.0078, 0.0464 and 0.0445,
respectively. The range of average relative fitness values of
the configurations matching (, best, 250) is from 99.34% to
99.47%. Combinations of the obfuscation method best with the
smaller population size have a similar narrow range for the dif-
ferent algorithms. Looking at the other obfuscation methods,
the picture is different. Average relative fitness values ranged
from 90.17% to 92.03% for (, best, 125), and from 93.04% to
94.47% for (, above, 250). The range for the fitness method
top is even broader. Average relative fitness values ranged
from 92.96% to 96.19% for (, top, 125), and from 91.28%
to 96.17% for (, top, 250). We assume that the increased
range is due to the random selection mechanism and fitness
obfuscation applied by the PE for these two fitness methods
(see Section III-B). The obfuscation method top is the only one
for which the range of mean relative fitness values increases
with population size. Furthermore, the standard deviation of
the mean relative fitness values of datasets increases slightly
from 0.0426, when aggregated by (, top, 125), to 0.0467 for
(, top, 250), whereas standard deviation drops for all other
obfuscation methods. An increased population size even leads
to worse results for some combinations including the fitness
method top. Note that with an increased population size, the
size of P ′ increases proportionally, and the stochastic element
is amplified (see Section III-B).

When making similar comparisons regarding the algorithms,
HC has the broadest range, from 90.17% for (HC, above,

5This means that the relative fitness values were aggregated for every
dataset by (, method,), where method is best, above, or top, respectively.
Standard deviation was calculated based on the average relative fitness value
for each dataset.

TABLE III
MEAN AND MINIMUM RELATIVE FITNESS OF SOLUTIONS FOUND

USING DIFFERENT NEIGHBORHOOD SIZES
(IN % OF THE OPTIMAL SOLUTION’S FITNESS)

Mean Min

250 95.77 63.64
100 94.94 74.32

TABLE IV
MEAN RELATIVE FITNESS OF SOLUTIONS PER COMBINATION OF

ALGORITHM, OBFUSCATION METHOD, AND NEIGHBORHOOD SIZE
(IN % OF THE OPTIMAL SOLUTION’S FITNESS)

best above top
100 250 100 250 100 250

HC 99.03 99.34 90.17 93.04 92.96 91.28
SCHC 99.05 99.36 92.03 94.47 96.19 95.97
GD 98.82 99.46 91.29 93.72 95.89 96.02
SA 98.96 99.37 90.56 93.19 93.32 92.02
TS 98.82 99.47 91.10 93.62 95.92 96.17

125) to 99.34% for the configuration (HC, best, 250). HC also
has the highest standard deviation of average relative fitness
values of the datasets (0.0413), when results are aggregated
by (HC, ,). Combined with the same fitness methods and
population sizes, the algorithm SCHC reached a minimum
average relative fitness value of 92.03% for (SCHC, above,
125) and maximum of 99.36% for (SCHC, best, 250), with
the lowest standard deviation of the average relative fitness
values of the datasets of 0.0272, when results are aggregated
by (SCHC, ,).

Regarding population size, mean relative fitness values
ranged from 90.17% to 99.05% for all configurations with
smaller population and from 91.28% to 99.47% for the config-
urations with larger population. Standard deviations of average
relative fitness values of the datasets are 0.0367 and 0.0292
for the smaller and larger population, respectively.

B. Convergence

We also analyzed the fitness evolution of the different
configurations, primarily to determine how many iterations
are required before optimizations converge to sufficiently
optimal solutions. Figure 4 presents, for each configuration,
the mean absolute fitness value in each iteration, and the mean
theoretical maximum fitness over all datasets. This shows that
near-optimal solutions were usually found after significantly
fewer than the 500 iterations performed. As an example,
the configuration (SCHC, best, 250) surpassed 95% of the
theoretical maximum fitness on average after 158 iterations
for the Datasets 28–57, and after only 25 iterations for the
Datasets 1–27.

VI. DISCUSSION

Regarding the performance in terms of quality of the found
solutions, the choice of local search algorithm does not seem
to have a significant influence. Convergence was also not
significantly affected by the choice of algorithm. On the other

Fig. 3. The mean relative fitness value for each dataset by (a) algorithm
(HC △, SCHC ×, GD ◦, SA +, TS ⋄), (b) obfuscation method (best ⊠,
above ▽, top ⋆), and (c) population size (100 ■, 250 ⊞).

hand, a larger population size seems to lead to better results,
although in this regard we have to note a performance penalty
in terms of run time: Referring to MPC implementations for
sorting and classifying solutions of an assignment problem in a
population [7], we note that the larger the population size, the
higher the run time. The disadvantage in run time, however,
is offset by generally faster convergence: Fewer iterations are
needed to arrive at the same result.

When limiting the disclosure of information regarding fit-
ness and dominance, the quality of the results tends to be
lower when more randomness is involved in the selection of
the solution to be returned by the Privacy Engine, i.e., when
the P ′

i selected by the obfuscation methods top and above
comprises more solutions.

Compared to the privacy-preserving implementation based
on GAs from the SlotMachine project [5], which requires
disclosure of the dominance of multiple solutions, revealing
only one solution per iteration, as in our approach with local
search algorithms, is clearly preferable from a security point of
view (cf. [17], [28]). Local search also seems to require fewer
iterations to converge than a GA. Protection of private inputs
could be further strengthened by including zero-knowledge
proofs to allow for verification that the Privacy Engine indeed
conducts optimization as specified (cf. [5], [7]). Furthermore,
Schuetz et al. [5] propose a permissioned blockchain to store
tamper-proof audit logs that could be opened in case there
are doubts regarding the Privacy Engine’s impartiality, which
could be incorporated in our approach as well.

VII. SUMMARY AND FUTURE WORK

We demonstrated that common local search algorithms can
be adapted for privacy-preserving optimization of assignment
problems. To this end, we separate the search for solutions
from the evaluation of those solutions, the evaluation being

Fig. 4. A solid line indicates for each configuration over all datasets the mean fitness value of the solution found in each iteration. A dashed line indicates
the mean fitness value of the solutions found by the Hungarian algorithm for all datasets. Each row shows the results of one algorithm (HC, SCHC, SA, GD,
TS, in that order). The first two columns on the left are results of configurations with the obfuscation method best, the two middle columns with method
above, and the two columns on the right with method top. Population size alternates by column, starting with the smaller population (100) in the first column,
and the larger population (250) in the second column. In particular, the charts show results for the following configurations: (1) HC, best, 100; (2) HC, best,
250; (3) HC, above, 100; (4) HC, above, 250; (5) HC, top, 100; (6) HC, top, 250; (7) SCHC, best, 100; (8) SCHC, best, 250; (9) SCHC, above, 100; (10)
SCHC, above, 250; (11) SCHC, top, 100; (12) SCHC, top, 250; (13) SA, best, 100; (14) SA, best, 250; (15) SA, above, 100; (16) SA, above, 250; (17) SA,
top, 100; (18) SA, top, 250; (19) GD, best, 100; (20) GD, best, 250; (21) GD, above, 100; (22) GD, above, 250; (23) GD, top, 100; (24) GD, top, 250; (25)
TS, best, 100; (26) TS, best, 250; (27) TS, above, 100; (28) TS, above, 250; (29) TS, top, 100; (30) TS, top, 250.

conducted by a Privacy Engine as proposed by Schuetz
et al. [5]. Different obfuscation methods contribute to the
protection of sensitive inputs by minimizing the information
that is revealed. Future work will investigate applicability of
the proposed framework to the generalized assignment prob-
lem [29] but also other optimization problems, e.g., traveling
salesman problem or knapsack problem. Future work will also
investigate the use of more modern techniques for the search
of solutions, e.g., ant colony or particle swarm optimization.
Furthermore, future work will implement the specific com-
putations required for privacy-preserving evaluation of the
fitness of solutions using MPC protocols. In this paper, we
referred to MPC implementations for sorting and classifying
solutions [7] to estimate the run time performance of the
presented approach.

ACKNOWLEDGMENT

This work was conducted as part of the SlotMachine project.
This project received funding from the SESAR Joint Under-
taking under grant agreement No 890456 under the European
Union’s Horizon 2020 research and innovation program. The
views expressed in this paper are those of the authors.

REFERENCES

[1] A. Vereecke and S. Muylle, “Performance improvement through supply
chain collaboration in europe,” International Journal of Operations
& Production Management, vol. 26, no. 11, pp. 1176–1198, 2006,
DOI:10.1108/01443570610705818.

[2] C. G. Schuetz, E. Gringinger, N. Pilon, and T. Lorünser, “A privacy-
preserving marketplace for air traffic flow management slot configu-
ration,” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), 2021, DOI: 10.1109/DASC52595.2021.9594401.

[3] K. Shin and P. Ramanathan, “Real-time computing: a new discipline of
computer science and engineering,” Proceedings of the IEEE, vol. 82,
no. 1, pp. 6–24, 1994, DOI: 10.1109/5.259423.

[4] T. Mitra, J. Teich, and L. Thiele, “Time-critical systems design: A
survey,” IEEE Design & Test, vol. 35, no. 2, pp. 8–26, 2018, DOI:
10.1109/MDAT.2018.2794204.

[5] C. G. Schuetz, T. Lorünser, S. Jaburek, K. Schuetz, F. Wohner, R. Karl,
and E. Gringinger, “A distributed architecture for privacy-preserving
optimization using genetic algorithms and multi-party computation,” in
CoopIS 2022, ser. LNCS, vol. 13591. Springer, 2022, pp. 168–185,
DOI: 10.1007/978-3-031-17834-4 10.

[6] E. Gringinger, S. Ruiz, and C. G. Schuetz, “Business and economic
concepts for a privacy-preserving marketplace for atfm slots,” in 2022
Integrated Communication, Navigation and Surveillance Conference
(ICNS), 2022, DOI: 10.1109/ICNS54818.2022.9771484.

[7] T. Loruenser, F. Wohner, and S. Krenn, “A verifiable multiparty
computation solver for the linear assignment problem: And appli-
cations to air traffic management,” in Proceedings of the 2022
on Cloud Computing Security Workshop (CCSW), 2022, pp. 41–51,
DOI:10.1145/3560810.3564263.

[8] W. Michiels, E. Aarts, and J. Korst, Theoretical Aspects of Local Search,
1st ed. Springer Publishing Company, Incorporated, 2010.

[9] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons,
2013.

[10] CORDIS – EU Research Results: A privacy-preserving marketplace for
slot management. [Online]. Available: https://doi.org/10.3030/890456

[11] C. G. Schuetz, S. Ruiz, E. Gringinger, C. Fabianek, and T. Loruenser,
“An auction-based mechanism for a privacy-preserving marketplace for
atfm slots,” in Proceedings of the 33rd Congress of the International
Council of the Aeronautical Sciences, 2022, https://www.icas.org/ICAS
ARCHIVE/ICAS2022/data/preview/ICAS2022 0693.htm.

[12] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015,
DOI: 10.1017/CBO9781107337756.

[13] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y.-
a. Tan, “Secure multi-party computation: theory, practice and appli-
cations,” Information Sciences, vol. 476, pp. 357–372, 2019, DOI:
10.1016/j.ins.2018.10.024.

[14] J. Sakuma and S. Kobayashi, “A genetic algorithm for privacy preserving
combinatorial optimization,” in Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO), 2007, pp.
1372–1379, DOI: 10.1145/1276958.1277214.

[15] S. Han and W. K. Ng, “Privacy-preserving genetic algorithms for rule
discovery,” in DaWaK 2007, ser. LNISA. Springer, 2007, pp. 407–417,
DOI: 10.1007/978-3-540-74553-2 38.

[16] Q. Liu, Y. Yan, P. Ligeti, and Y. Jin, “A secure federated data-
driven evolutionary multi-objective optimization algorithm,” 2022, DOI:
10.48550/ARXIV.2210.08295.

[17] D. Funke and F. Kerschbaum, “Privacy-preserving multi-objective evo-
lutionary algorithms,” in PPSN 2010, ser. LNCS, vol. 6239. Springer,
2010, pp. 41–50, DOI: 10.1007/978-3-642-15871-1 5.

[18] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[19] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Appli-
cations. Springer, 2014.

[20] J. Hromkovič, Algorithmics for Hard Problems: Introduction to Combi-
natorial Optimization, Randomization, Approximation, and Heuristics.
Springer, 2001, DOI:10.1007/978-3-662-05269-3.

[21] KIE Community, “GitHub Repository kiegroup/optaplanner – Branch
8.14.x.” [Online]. Available: https://github.com/kiegroup/optaplanner/
tree/8.14.x

[22] K. Schuetz, “SlotMachine: Privacy-Preserving OptaPlanner.” [Online].
Available: https://github.com/jku-win-dke/optaplanner/tree/Slotmachine

[23] C. G. Schuetz, S. Jaburek, and K. Schuetz, “SlotMachine:
Heuristic Optimizer.” [Online]. Available: https://jku-win-dke.github.io/
SlotMachine-Optimizer/

[24] ——, “Slotmachine: Heuristic optimizer.” [Online]. Available: https:
//github.com/jku-win-dke/SlotMachine-Optimizer/tree/kschuetz

[25] C. G. Schuetz, T. Lorünser, S. Jaburek, K. Schuetz, F. Wohner, R. Karl,
and E. Gringinger, “A distributed architecture for privacy-preserving
optimization using genetic algorithms and multi-party computation
– Appendix,” 2022. [Online]. Available: http://files.dke.uni-linz.ac.at/
publications/schu22c/appendix.pdf

[26] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[27] K. Schuetz, C. G. Schuetz, and S. Jaburek, “Privacy-Preserving
Implementation of Local Search Algorithms for Solving Assignment
Problems in Time-Critical Real-World Applications,” 4 2023, DOI:
10.6084/m9.figshare.21867903.v2. [Online]. Available: https://doi.org/
10.6084/m9.figshare.21867903.v2

[28] M.-C. Silaghi and V. Rajeshirke, “The effect of policies for selecting
the solution of a DisCSP on privacy loss,” in AAMAS ’04, 2004, pp.
1396–1397.

[29] P. Chu and J. Beasley, “A genetic algorithm for the generalised assign-
ment problem,” Computers & Operations Research, vol. 24, no. 1, pp.
17–23, 1997, DOI:10.1016/S0305-0548(96)00032-9.

