
Privacy-Preserving Implementation of an Auction
Mechanism for ATFM Slot Swapping

Paul Feichtenschlager∗, Kevin Schuetz∗, Samuel Jaburek∗, Christoph G. Schuetz†, and Eduard Gringinger‡
∗Johannes Kepler University Linz, Linz, Austria

{feichtenschlager,kschuetz,jaburek}@dke.uni-linz.ac.at
†Johannes Kepler University Linz, Linz, Austria

ORCID: 0000-0002-0955-8647
‡ Frequentis AG, Vienna, Austria
ORCID: 0000-0003-3897-3003

Abstract—Air traffic flow management (ATFM) regulations
issued by the EUROCONTROL Network Manager (NM) during
periods of reduced capacity in the European air traffic network
typically result in flight delays and additional costs for airspace
users (AUs). However, not all flights are equally impacted by these
regulations, and AUs would like to prioritize flights based on their
preferences while protecting the confidentiality of such informa-
tion. Thus, in the SlotMachine project, we proposed a privacy-
preserving marketplace for collaborative optimization of flight
lists during ATFM regulations An auction mechanism incentivizes
AUs to participate in the SlotMachine’s optimization runs. The
proposed implementation of the auction mechanism in a privacy-
preserving manner employs a genetic algorithm in combination
with multi-party computation (MPC), since a privacy-preserving
implementation of a deterministic algorithm would not finish
within the time constraints. Experiments using realistic synthetic
datasets based on real-world samples demonstrate feasibility of
the proposed implementation.

Index Terms—air traffic flow management, ATFM regulation,
flight prioritization, combinatorial auction, genetic algorithm,
multi-party computation

I. INTRODUCTION

In cases of reduced capacity in the European air traffic
network, the EUROCONTROL Network Manager (NM) is-
sues air traffic flow management (ATFM) regulations, which
cause flight delays that typically result in additional costs for
the airspace users (AUs) operating the flights affected by a
regulation. Regarding the operational impact of a regulation,
not all flights are alike: For some flights, incurring delay is
more problematic than for others. Therefore, AUs would like
to be able to prioritize individual flights according to their
preferences, which can be stated in terms of wished time
slot and margins (time not after and time not before). Those
preferences, however, are confidential information that AUs
want to protect not only from competitors but also from an
honest-but-curious platform provider.

In the SlotMachine project [1], which was funded by the
SESAR Joint Undertaking in the EU Horizon 2020 research
program, we proposed a privacy-preserving marketplace that
allows AUs to collaboratively optimize flight lists in case
of a regulation while protecting the confidentiality of the
preferences for the optimization (margins and priority of
flights) submitted by the participating AUs. The employed

market mechanism is key to incentivize AUs to participate in
the optimization. In previous work [2], we proposed a market
mechanism based on combinatorial auctions with delay credits
to compensate airspace users that give up favorable ATFM
slots. Airspace users can give up slots for flexible flights in the
present to earn credits that can be spent to prioritize important
flights in the future.

The privacy-preserving implementation of an auction mech-
anism employed in the proposed marketplace, under the given
time constraints (cf. [3]), requires a heuristic approach: We
employ a genetic algorithm together with multi-party computa-
tion (MPC) to find feasible exchanges that produce the highest
global utility. The genetic algorithm iteratively looks for
candidate solutions to the optimization problem, i.e., finding
feasible exchanges according to the auction mechanism. Each
iteration step produces a new population of candidate solu-
tions. A separate component—the Privacy Engine— evaluates
the candidate solutions based on the preferences submitted
by the airspace users. Multi-party computation ensures that
the confidentiality of those preferences is guaranteed; the
preferences are not decrypted on the server. Rather, multi-
party computation distributes computation on multiple nodes.
Furthermore, the Privacy Engine does not necessarily return
precise fitness values for the candidate solutions but may
further obfuscate the returned information regarding the fit-
ness of candidate solutions. We propose different obfuscation
methods, which complicate the search for solutions with an
acceptable fitness value but improve privacy protection.

To evaluate the proposed solution, we conducted experi-
ments with genetic algorithms using different configurations
over synthetic datasets that were generated based on samples
of the margins of real-world flights for real-world regulations,
received from experts from Swiss International Air Lines
who participated in the SlotMachine project. We compared
the found solutions using the various configurations with
the deterministic optimum, which in a real-world operational
setting cannot be found within the time limit. With respect to
previous work [4], we specifically focus on the implementation
of the proposed auction mechanism, which requires certain
optimization techniques in order to yield good results. We also
used more realistic datasets in our evaluation than in previous



work. Our findings can serve as the basis for building a
privacy-preserving marketplace for ATFM slot swapping using
an auction-based mechanism that ensures equity and fairness
over time.

The remainder of this paper is organized as follows. In
Section II we provide relevant background information, in-
cluding a review of related work. In Section III we briefly
present the auction mechanism proposed by Schuetz et al. [2]
for the SlotMachine platform. In Section IV we investigate
the privacy-preserving implementation of the previously pre-
sented auction mechanism. In Section V we discuss the setup
of experiments conducted for evaluation purposes, including
generation of realistic synthetic datasets, configuration of the
algorithm, and employed metrics. In Section VI we present
the results of the experiments. In Section VII we discuss those
results. In Section VIII we conclude the paper with a summary
and an outlook on future work.

II. BACKGROUND

In this section, we provide background information on
ATFM slot swapping, the SlotMachine platform’s architec-
ture, and genetic algorithms, which the SlotMachine platform
employ for optimization (in combination with multi-party
computation); we also review related work.

A. Slot Swapping in Air Traffic Flow Management

If an airport runs at full capacity, even minor events can
cause flight delays. When such a congestion occurs, a new
assignment of flights to ATFM slots is required. Mapping two
types of entities, e.g., flights and slots, while minimizing the
cost or maximizing the utility of the assignment, is referred to
as assignment problem [5]. In the original form, the assignment
problem describes the task of assigning agents to jobs. No
agent can be overloaded, and each task needs to be assigned
to one agent [6]. In the ATFM context, each flight must be
assigned to one slot, and no slot can be used more than once.

Currently, the Network Manager generally follows a first-
planned, first-served (FPFS) approach: Flights are assigned
new slots in the order that was originally planned. When
applying the FPFS approach, the order of the flights stays
roughly the same and thus is considered to be fair [7].

In practice, the costs incurred by delays are not linearly
dependent on the duration of the delay. Some flights can
tolerate delays more easily than others, as the underlying
cost structure is different for each flight. In addition, the
relationship between additional cost and the duration of the
delay can typically be described through a step function.
Up to a certain point in time, flights can be pushed back
rather cheaply, whereas the costs rise sharply after such delay
targets. Each flight can have one or more delay targets, the
positions of the delay targets differing for each flight [7].
Figure 1 illustrates the difference between FPFS and utility-
based or cost-based optimization. The flight list on top shows
the original schedule of the flights. The flight list in the
middle shows rescheduling of the flights according to the FPFS
principle due to reduced capacity. The flight list on the bottom
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Fig. 1. Different options for flight prioritization in case of reduced capacity
in the air traffic network. In case the original schedule cannot be kept due to
reduced capacity, a utility-based prioritization of flights that takes into account
the flight-specific utility functions produces a better solution in terms of global
utility than a first planned, first served approach.

shows the optimal flight list given a utility function for each
flight. Flight A has to endure only a modest decrease in utility
(or increase in costs) in case of a delay until t4, after which
there is a sharp drop in utility (or increase in costs). Flight B,
on the other hand, already has a quite steep decline in utility.
Flight C has only a flat decline in utility. Hence, it would be
beneficial globally to give the first slot to Flight B instead
of Flight A. Note that no flight can be assigned before its
originally scheduled time slot.

Due to the varying cost structures, an FPFS approach is
not always optimal for AUs in terms of additional costs [8].
In the User-Driven Prioritization Process (UDPP), an airline
may rearrange its flights in an optimal order [9]. To increase
the benefit, an airline may swap its own flights, based on
the cost functions (or other criteria). Yet, since airlines are
only operating a limited number of flights at an airport, the
possibility of swapping is restricted. Therefore, the possibility
to exchange slots between different airlines would increase the
flexibility of AUs.

Based on the assumption that it is the AUs themselves that
best know the preferences and underlying cost structures for
the various flights, an overall more beneficial flight list could
be generated when the optimization process takes into account
the information of all AUs [10]. In such a case, optimizing a
flight list may involve assigning some flights to less favorable
slots compared to the FPFS approach, so a market mechanism
needs to be put in place to compensate airlines that accept a
later slot for flights. AUs receiving an improved slot allocation
through the optimization have to compensate AUs accepting
a displacement for their flights. Castelli et al. [11] name two
factors for a market mechanism to be accepted. On the one



hand, a non-negative payoff for each participant needs to be
reached, and on the other hand, the mechanism needs to be
fair over time [11]. Schuetz et al. [2] introduce an auction-
based mechanism (see Section III), which we implement in
this paper using a genetic algorithm.

B. SlotMachine Architecture

For a system to find an optimal flight list, the system
requires information about the preferences of multiple partici-
pants. However, airlines are reluctant to make that information
public or even entrust it to a third party. Loruenser et al. [3]
propose the use of multi-party computation (MPC) to protect
the AUs’ preferences during the optimization, which can be
combined with a genetic algorithm that looks for candidate
solutions [4]. An MPC implementation of a deterministic
algorithm, e.g., the Hungarian method (or algorithm) [12],
would not finish within the time constraints of the ATFM use
case [3]. A heuristic optimization algorithm, which separates
the search for candidate solutions from the evaluation of the
solutions may yield a result within a shorter time period but
may not find the optimal solution—there is a trade-off between
privacy protection and performance.

The SlotMachine system is a system based on MPC and ge-
netic algorithms, the main components of the system being the
Privacy Engine (PE) and the Heuristic Optimizer (Figure 2);
the Controller coordinates communication between Network
Manager, SlotMachine system, and AUs while also initializing
the optimization runs. The Heuristic Optimizer iteratively
looks for candidate solution to the optimization problem,
the PE employs MPC to securely evaluate the candidate
solutions found by the Heuristic Optimizer after each iteration
step, the confidentiality of the preferences being protected
through secret-sharing. MPC nodes that are hosted outside
the system, potentially operated by different AUs, conduct
the required computations. To further increase the security of
the private inputs, different obfuscation methods may conceal
the resulting fitness values from the Heuristic Optimizer. The
PE returns the evaluated population, including obfuscated
information about the individual fitness values, to the Heuristic
Optimizer [4]. The Heuristic Optimizer estimates fitness values
for all individuals based on the returned information, and uses
a genetic algorithm or a local search algorithm to construct the
next generation of candidate solutions. This iterative process
continues until a termination criterion is met. The obfuscation
methods can be divided into two groups, depending on whether
sorting is required. This is important from a performance
point of view since the need for sorting the entire population
drastically reduces the performance in the context of a MPC.
We refer to Section IV-C for a description of the different
obfuscation methods.

C. Genetic Algorithms

A genetic algorithm (GA) is a metaheuristic based on the
idea of natural selection in evolution, which can be employed
to solve various optimization problems. The underlying con-
cept of GAs—or, more generally, evolutionary algorithms—is

SlotMachine
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Airspace UsersNetwork Manager
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Fig. 2. The architecture of the SlotMachine platform (adapted from Schuetz
et al. [13, p. 10])

that a population of candidate solutions for the problem is
generated and then evaluated over multiple iterations (called
generations). Based on the evaluation of the fitness of each
candidate solution (individual) of a population, the GA gener-
ates a new population (the next generation). Figure 3 illustrates
the principle of a GA.

Every individual in a population is characterized by several
properties (chromosomes). A defined number of individuals
(population size) makes up the population in a generation.
Each solution in the generation is evaluated using a fitness
function, taking into account the chromosomes of each indi-
vidual. This evaluation is the basis for the composition of the
next generation. Iteratively, a new generation is built based
on the previously evaluated generation [14]. Solutions with a
high fitness value (and their chromosomes) will more likely
be present in the next generation. Thus, promising areas of
the search space will likely be explored and the fitness of the
solutions can be expected to rise over time [15].

To build a new generation, three concepts are involved. First,
selection is applied to the candidate solutions. This concept is
comparable to the survival of the fittest principle in biology
[16]. Second, crossover is used to combine two or more solu-
tions. Crossover selects a locus (position) on the chromosome,
which determines which chromosomes are used from which
solution [16, p. 5]. Chromosomes before the locus are used
from one solution and chromosomes after the locus are used
from the other solution [16, p. 8]; it is also possible to use
more than one locus to combine two solutions. In biological
terms, this approach is comparable to recombination [16].
Finally, mutation is applied, in which individual chromosomes
are changed randomly. Mutation tackles the problem that two
parents with similar chromosomes can only produce children
with those chromosomes. The changes caused by mutation
are rather small but help with exploring also deviating (off-
shot) solutions and thereby increasing the diversity in the
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Fig. 3. Illustration of a genetic algorithm for the assignment problem

population [17]. When building new generations, a GA highly
depends on randomness [18]. Due to the introduction of
randomness, the results of GAs are not deterministic. Thus,
two executions of a GA with the same input data do not
necessarily lead to the same results.

D. Related Work

Multiple works have explored privacy-preserving auction
mechanisms in different contexts. Gao et al. [19] propose a
privacy-preserving auction scheme (PPAS) for auctioning data
commodities generated by IoT (internet of things) networks.
Chen et al. [20] design a privacy-preserving spectrum auc-
tion mechanism utilizing cryptographic techniques. Similarily,
Huang et al. [21] suggest PISA, a privacy-preserving integer
comparison protocol to realize an auction-mechanism for
spectrum allocation. Qiu et al. [22] focus on combinatorial
spectrum auctions and presented PICASSO, based on homo-
morphic encryption, protecting privacy of bidders with regards
to both bidding values and bundles. Zhai et al. [23] propose the
ExPO auction mechanism to allocate electricity from swap sta-
tions to electric vehicles in microgrids, while ensuring privacy
and individual utilities. In the context of cloud computing,
Wang et al. [24] propose PADS, a privacy-preserving auction
design mechanism for dynamic pricing of cloud resources,
which protects private information in bids through differential
privacy guarantees. Palmer et al. [25] suggest an algorithm
for the development of a combinatorial auction circuit that
computes the result of a combinatorial auction using garbled
circuits, which provides privacy for all bids except the winning
bid. The proposed privacy-preserving auction mechanism for
ATFM slot swapping shares similarities with those previous
works on privacy-preserving auctions, which also address
security and privacy concerns using cryptographic techniques.
Whether the related approaches are suitable in practice for the

ATFM use case remains doubtful since the SlotMachine sys-
tem employs a customized variant of combinatorial auctions.
Nevertheless, future work will investigate the implementation
of the SlotMachine auction mechanism directly using MPC
and compare performance to the GA-based approach.

III. AUCTION MECHANISM FOR ATFM SLOT SWAPPING

In the following, we summarize the principles of the
auction-based market mechanism for the SlotMachine platform
proposed by Schuetz et al. [2]. We first describe the types of
flights before discussing exchange for credits as a form of
compensation of AUs that give up favorable slots.

The auction mechanism is based on combinatorial auctions,
where bidders can bid for a bundle of objects but only want
to receive one [26]. The application of combinatorial auctions
in the aeronautics domain is not new: Rassenti et al. [27]
show how combinatorial auctions can be employed for the
assignment of airport time slots. In the proposed mechanism
for the SlotMachine platform, AUs can bid for earlier ATFM
slots for important flights. On the other hand, AUs with flexible
flights can offer ATFM slots for auction. Based on the bids and
“asks” submitted by the AUs, the optimization algorithm finds
feasible exchanges with high utility. The bids and exchanges
are the basis for computation of credits that airlines receive
for accepting additional delay or that airlines have to pay in
case of receiving a better slot. The idea is that airlines may
accept later ATFM slots for certain flights to be able to reduce
delays for priority flights in the future.

A. Types of Flights

In the context of the auction-based market mechanism,
flights can be classified according to the bids and offers
(“asks”), respectively, associated with the flight. The starting
point is the time that the flight is assigned in the initial
flight allocation. As described in Section II-A, the initial flight
allocation follows an FPFS approach. The type of flight refers
to whether the airline wants to receive an earlier slot than
assigned or is open to pushing a flight further back. Flights for
which neither is true are not participating in the optimization
process and will keep their original position.

1) Flexible flights: Flights for which the AUs are willing
to receive a later slot if compensated with credits are referred
to as flexible flights. The margins within which flexible flights
can be pushed forth or back are defined through a TimeNo-
tAfter parameter provided as input to the optimization by the
airlines. If the flight is assigned to a later ATFM slot than
planned in the initial allocation, the AU operating this flight
will receive credits as compensation. The number of credits
depends on the amount of additional delay endured.

2) Priority flights: For some flights, AUs are willing to
invest credits to receive better ATFM slots in an optimized
flight list. Such flights are referred to as priority flights. AUs
are bidding for one or more slots for those flights and define
how many credits they are willing to pay at most for a certain
ATFM slot. If the optimization assigns a better AFTM slot to
the flight, the AU receiving the better slot must compensate the



original “owner” of the slot. When other AUs are bidding for
the same slot, not only the previous holder of the resource but
also the other AUs who did not receive it must be compensated
for the sake of fairness.

3) Priority flights with flexibility: Priority flights with flex-
ibility can be seen as a combination of the first two types of
flights. For priority flights with flexibility, AUs are bidding
for better ATFM slots but at the same time are offering their
current slot if no better slot can be obtained. When the flight
receives a better slot, credits must be paid similarly to priority
flights. On the other hand, the AU receives credits if the flight
is assigned to a worse slot.

Fig. 4. Illustration of bids and “asks” for different flights as well as the
optimal slot swaps between flights (adapted from Schuetz et al. [2]). A square
(□) denotes a flight’s originally assigned slot, a bullet (•) the assigned slot
after swapping. The grey area denotes feasible exchanges, a double vertical
line the time not after for flexible flights. Positive numbers indicate bids for
better slots, arrows indicate slot swaps, and a negative number represents the
number of slots that a flight is pushed back by an exchange.

Figure 4 shows an example of flexible flights (Flights A,
B, and C) and priority flights (Flights Y and Z). Flight A
(originally at Slot S1) would be willing to be pushed back to
S5, Flight B (S3) to S7, and Flight C (S2) to S6. Flight Y
should be allocated to S1 or (with lower preference) S2.
Likewise, Flight Z should be allocated to S1 or (with lower
preference) S2. The optimal solution would be to allocate
Flight Y to S1 and Flight Z to S2 (maximizing the utilities
expressed by the bids) while pushing back Flight A to S3,
Flight B to S7, and Flight C to S6.

B. Credits

For compensating AUs, the market mechanism employs
non-monetary delay credits. Those credits cannot be ex-
changed for real currency. Credits can only be used to bid
for better ATFM slots. Therefore, the value of the credits is
linked to the cost of delay that can be avoided through their
usage. This value differs for each AU since the underlying
cost structure varies. If the exchange rate of one credit is
determined by one minute of delay reduction, the cost saving
which goes along with it is a different amount of money for
each airline.

We refer to Schuetz et al. [2] for a discussion of the market
mechanism’s properties and an explanation how the amount of
credits to be exchanged as compensation and congestion fee,
respectively, are computed. Intuitively, the amount of credits
that an AU receives for a flight is proportional to the amount
of additional delay accepted. For example, the AU operating
Flight A in Figure 4 would receive two credits if pushed back
two slots to S3. In turn, the amount of credits that the AU
operating Flight Y would have to pay if receiving S1 would

depend on the bid of 50 placed by the AU (but will likely be
lower than that).

Ball et al. [28] state that in order to be accepted in the
long run, a market mechanism must be fair and beneficial
for all participants. Similar requirements are stated by Castelli
et al. [11]. The SlotMachine auction mechanism aims to
spread the gain in overall utility between the participants in
an equitable manner. Every AU should receive a share of
the utility gain, including the AUs that receive a better slot
but not the preferred slot(s) for their flight(s). AUs operating
flights that are either accepting a worse ATFM slot or are
not getting their wished slot will be compensated by AUs,
the flights of which received the wished slot. For example,
the AU operating Flight Z in Figure 4 would have to pay
a compensation but would also receive a share of the utility
gain of the AU operating Flight Y because Flight Z was not
allocated its most preferred slot (S1). With the obtained credits,
better ATFM slots can be obtained in the future. Furthermore,
flights not participating in the optimization will not be affected
and remain in their original position.

IV. PRIVACY-PRESERVING IMPLEMENTATION

In the following section, we present the extension developed
for the SlotMachine system to optimize flight lists based on
the presented auction mechanism. The preferences can still be
captured in weight maps, as in the original implementation, but
some things must be considered to capture the TimeNotAfter
constraints properly.

A. Weight Maps

The preferences of the airlines need to be represented in
a way that facilitates optimization. For every flight, a weight
map can be created, indicating how valuable each slot is for
the flight. However, the creation of such weight maps is time-
consuming and difficult which is particularly disadvantageous
in a time-critical real-world setting.

A much easier task is defining the preferences as mar-
gins [29]. In this context, three times are relevant for each
flight: The TimeNotAfter determines the latest time a flight
should be assigned, the TimeWished indicates the time an
airline would prefer for a certain flight, and the TimeNotBefore
is the earliest time an airline wants for a slot. In addition, a
priority may indicate how valuable receiving the TimeWished
for the flight would be for the airline [7].

Based on the margins, a weight map for each flight can
be generated indicating the utility of assignments to the
ATFM slots. In addition to the preferences (TimeWished,
TimeNotAfter, TimeNotBefore) used by Schuetz et al. [4],
for an auction-based market mechanism, the TimeAssigned
is relevant. Depending on the type of flight, the weight map
is shaped differently. In the following, for the three different
types of flights, the shape of the distribution in the weight
maps is explained.

1) Flexible Flights: Flexible flights have a TimeNotAfter
that is later than the TimeWished. Within the window between
the slot that was assigned initially and the TimeNotAfter, the



Fig. 5. Weight distribution of a flexible flight

flight can be pushed back. In the optimization, shifting is
accepted up to the TimeNotAfter. For this reason, the weights
are set to zero to represent the feasibility.

Alternatively, the weights could be set to a small negative
number showing that a credit exchange is required for those
slots. Therefore, the weights could decrease linearly with a
small gradient. Since flexible flights are not bidding for better
slots, the weight map contains no positive values. For this rea-
son, the values from the TimeAssigned to the TimeScheduled
are zero as well. Slots that are before the TimeScheduled and
after the TimeNotAfter have (large) negative values. Those
cases are constraint violations whereby the TimeScheduled is
a hard constraint, i.e., no allocation before the TimeScheduled
is allowed, and the TimeNotAfter is a soft constraint, i.e., no
allocation after the TimeNotAfter is desired but the Network
Manager would not complain. Figure 5 shows the weight
function depending on the time of the slot for flexible flights.

2) Priority Flights: Priority flights have a TimeWished
which is before the TimeAssigned. For priority flights, in addi-
tion to the margins, the number of credits an airline is willing
to pay for the preferred slot is required. The weight at the
TimeWished is equal to this value. From the TimeNotBefore
to the TimeWished, the weights are increasing linearly—at
least in the current proposal, which could be changed in the
future—, starting from zero and peaking at the TimeWished.
Between the TimeWished and the TimeAssigned, the weights
are dropping, eventually reaching zero at the TimeAssigned.
If the two constraints described earlier are violated, the weight
map has a negative value. Figure 6 shows the weight function
for priority flights. .

3) Priority Flights with Flexibility: The weight map is a
combination of the first two types of flights. The TimeWished
is before the TimeAssigned and the TimeNotAfter is after the
TimeAssigned. The weight map is shaped similarly to priority
flights before the TimeAssigned and like flexible flights after
the TimeAssigned. Figure 7 shows the structure of the weight
map for priority flights with flexibility.

Fig. 6. Weight distribution of a priority flight without flexibility

Fig. 7. Weight distribution of a priority flight with flexibility

B. Genetic Algorithm

As input data, the genetic algorithm receives a weight map
containing bids and the TimeNotAfter for each flight, although
a TimeNotAfter penalty can also be directly included in the
weight map, which facilitates computation for the PE. With
this information, the weight representation can be computed
as introduced in Section IV-A. Based on those inputs, the
Privacy Engine computes the fitness of a solution. To optimize
the flight list based on the auction-based market mechanism,
conceptually, the fitness function is as follows [4]. First,
solutions that do not violate any margins should be ranked
higher than solutions that violate margins. Second, the sum
of the bids should be maximized. Third, the number of swaps
could be minimized.

In the current implementation, we do not aim to minimize
the number of slots since the other two criteria are more
important. The representation of those criteria is achieved
through a fitness function. The fitness value for each solution is



calculated based on the weight map and the TimeNotAfter. The
weight map acts as a proxy for the bids. In the computation of
the fitness, the weights of each flight for the assigned slot are
summed up. In addition, the violations of the TimeNotAfter
constraints are recorded. Finally, the fitness of a slot assign-
ment is calculated by subtracting the number of constraint
violations multiplied by the weight of the penalty violation,
from the cumulated values in the weight map.

Formally, the assignment problem can be characterized as
a graph G, linking a set of Flights U to a set of slots V ,
where the set of edges E represents the valid assignments,
i.e., assignments not violating a soft or a hard constraint, and
w a function representing the weight maps of the flights. We
base the following fomulation of the problem on Burkard et
al. [5].

G = (U, V,E,w)

Hence, the set of edges E is a relation between U and V .

E ⊆ U × V

The total injective function w represents the weight maps
of all flights. For each assignment of a flight to a slot, a fitness
value is defined independently of the feasibility of the as-
signment, although the TimeScheduled and the TimeNotAfter
constraints could also be directly encoded into w.

w : U × V → Z

A solution is represented through a total injective function
ϕ assigning each flight in U to a slot in V .

ϕ : U → V

The fitness of a solution is defined as the sum of the fitness
of the assignments of all flights in U . For each assignment
of a flight u ∈ U to a slot v ∈ V that is not part of the set
E, and thus violates a constraint, the individual fitness of the
assignment is defined as -100 000—a value which could also
be changed. If the pair (u, v) is part of E, the fitness is defined
by the the weight, represented by the result of the function w
for u and v as arguments. Algorithm 1 presents the procedure
to calculate the fitness of a candidate solution ϕ, considering
the set of valid assignments E and the weight map w, as well
as a penalty p, which in our case was set to 100 000.

To ensure that the influence of constraint violation is greater
than the influence of the sum of bidding, the weight of the
penalty was determined at a height to always extends the sum
of bids. Therefore, the fitness of a solution with a constraint
violation always results in a negative overall fitness. For
example, the swapping in Figure 8 violates the TimeNotAfter
of Flight A, and thus the solution has a value lower than -
100 000, which is lower than any solution containing only
valid assignments.

If the inputs that are provided by AUs are bids and TimeNot-
After constraints as described by the auction mechanism, the

Algorithm 1: Fitness function
Data: a candidate solution ϕ : U → V , a weight map

w : U × V → Z, the set E ∈ U × V of valid
mappings between U and V , and a penalty
p ∈ N for invalid assignments

Result: the fitness value f of ϕ given w, E, and p
1 f ← 0
2 for each u, v such that ϕ(u) = v do
3 if (u, v) ∈ E then
4 f ← f + w(u, v)
5 else
6 f ← f − p
7 end
8 end
9 return f

Fig. 8. An example of slot swapping that results in the violation of margins
and thus constitutes an infeasible exchange.

fitness function of the genetic algorithm corresponds to Algo-
rithm 1. In practice, to facilitate computation of a solution’s
fitness by the Privacy Engine, and as input for the Hungarian
method, the penalty can already be included in the weight map
for slots after a flight’s TimeNotAfter margin.

We employed the Jenetics framework [30] to implement the
genetic algorithm in Java. Jenetics provides implementations
of common recombination and mutation operators as well
as selectors and efficient encodings for common optimiza-
tion problems, including the assignment problem. By using
Jenetics, we could easily experiment with a multitude of
configurations of the genetic algorithm.

C. Obfuscation Methods

Disclosing actual fitness values to the Heuristic Optimizer
during the optimization potentially threatens the confidentiality
of the private input data provided by AUs. For this reason,
different obfuscation methods were developed to disguise
actual fitness values and improve protection of confidentiality
of private input data. Depending on the obfuscation method,
the Heuristic Optimizer receives limited information about
the fitness values of individuals within a population from
the Privacy Engine. Based on this information, the Heuristic
Optimizer estimates fitness values for each solution. The
estimated fitness values are the foundation for selection and
recombination by the GA.

In the following we briefly present the obfuscation methods.
The obfuscation methods can be divided into two groups, de-
pending on whether they require sorting of candidate solutions
during evaluation of a population. This is important from a



performance perspective, as sorting cannot be parallelized in
the context of MPC, which has a negative effect on running
time.

1) Order: When applying the Order obfuscation method,
the Heuristic Optimizer receives the order of the individuals
along with a flag that indicates if a new maximum fitness
has been reached in this generation with regards to the whole
optimization process. The Heuristic Optimizer then estimates
the maximum and minimum fitness value in the generation
and applies a linear or logarithmic function to estimate fit-
ness values for each individual. To estimate the maximum
fitness values, the optimization starts with an arbitrary initial
maximum fitness which is estimated for the first generation.
In subsequent iterations, this value is increased by 1 each
time the Heuristic Optimizer receives the information that a
new actual maximum fitness value has been achieved with
regards to the whole optimization process. This way, the GA
is able to accurately determine the generation in which the
maximum fitness has been achieved. The minimum fitness
value is estimated to be roughly the maximum fitness minus
two times the maximum fitness. This approach is employed
for all obfuscation methods. Based on the estimated maximum
and minimum fitness values, a linear or logarithmic function is
applied to estimate fitness values between the maximum and
minimum for all individuals according to the disclosed order of
individuals. Although this method hides actual fitness values,
it still discloses a significant amount of information regarding
dominance of individuals. Also, as this method requires sorting
during evaluation, it is not optimal from a performance point
of view.

2) Order Quantiles: When applying the obfuscation
method Order Quantiles an additional parameter is required
indicating over how many buckets the individuals should be
spread. The ordered generation then gets put in the buckets
containing the same amount. If ten buckets are used, the
first bucket contains the best 10% solutions. The Heuristic
Optimizer receives the mapping of individuals to buckets and
estimates a fitness value for each bucket and the contained
solutions, similar to the approach described for the obfuscation
method Order, so that all candidate solutions in the same
bucket are assigned the same estimated fitness value. This
approach increases the confidentiality of fitness data and is
thus practically applicable, although this method still requires
sorting.

3) Top Individuals: When applying the top individuals
obfuscation method the individuals with the highest fitness
values are disclosed to the Heuristic Optimizer. This method
is a special case of the Order Quantiles method. A parameter
determines how many percent of a generation are marked
as top individuals. Neither is the exact order of the best
individuals nor of the rest revealed. However, sorting is still
required.

4) Above Threshold: When applying the above threshold
method all individuals whose actual fitness surpasses a thresh-
old are disclosed to the Heuristic Optimizer. The threshold
value is determined by a configurable parameter relative to

the maximum fitness of the population. When the parameter
is 70%, and the maximum fitness is 1000, values with a fitness
value over 700 are disclosed. This method is comparable to
the Top Individuals method regarding the amount of disclosed
information, but does not require sorting.

5) Fitness Range Quantiles: When applying the Fitness
Range Quantiles fitness method, the individuals of a generation
are spread in buckets. Each bucket contains individuals within
a specific fitness range. An input parameter defines how many
buckets are used. The distance between the highest and the
lowest values is separated into equally long ranges. Each
range then is assigned to one bucket. Contrary to the order
quantiles approach, not every bucket contains the same number
of individuals.

D. Privacy Engine

In the SlotMachine system, the Privacy Engine is respon-
sible for coordinating the MPC. The component receives
encrypted inputs about the preferences for each AU at the
beginning of an optimization. In every iteration, the Heuristic
Optimizer transmits a population of candidate solutions to the
Privacy Engine for evaluation. The Privacy Engine uses the
encrypted inputs and the MPC Nodes, which are hosted out-
side the system, to cooperatively evaluate the fitness functions
for the individuals of the population to produce the required
information according to the chosen obfuscation method (see
section IV-C). For the work at hand, MPC and the function
of the Privacy Engine were simulated by considering only
the amount of information that would be disclosed by the
Privacy Engine (for a given obfuscation method) during the
optimization. We refer to Loruenser et al. [3] and Schuetz et
al. [4] for further information about the Privacy Engine and
the MPC employed in the SlotMachine system.

V. EXPERIMENTAL SETUP

This section will detail the setup for the conducted per-
formance experiments. We will first describe the creation of
synthetic datasets that were used as inputs for the experiments.
Afterwards, the details regarding the configuration parameters
of the GA will be presented, before we conclude with a brief
documentation of the metrics chosen for further evaluation of
the results.

A. Datasets

For the experiments, we generated synthetic datasets with
100 flights and slots, based on data samples of margins for
flights in real-world regulations, annotated by experts from
Swiss International Air Lines. Note, however, that real datasets
in a production system will likely differ, since we only have
data from one airline and some of the samples are the result
of using an automatic tool, with no further checks by human
experts. The provided preferences were analyzed regarding
the widths of the margins, i.e. the time window between the
time not before and the time not after. Table II gives the
absolute and relative frequencies that a margin falls into a
certain interval in minutes in the provided real-world samples



of preferences. In addition, the probabilities that a certain
slot is wished by a given number of flights in the provided
preferences have been analyzed. Table III presents the absolute
and relative frequencies that a slot is wished by a certain
number of flights. We also investigated the differences between
the time wished and the time not before. Table I shows the
absolute and relative frequencies of the difference between
those points in time in the real-world samples of preferences.
Figure 9 shows, for one example dataset modeled after the
provided real-world samples, the distribution of flights with
regards to the differences between the time wished and the
time not after to the time assigned.

TABLE I
ABSOLUTE (f ) AND RELATIVE (p) FREQUENCIES OF DIFFERENCE (∆) IN

MINUTES BETWEEN THE TIME WISHED AND THE TIME NOT BEFORE
IN THE REAL-WORLD SAMPLES OF PREFERENCES

∆ f p

0 or 1 40 0.1375
2 8 0.0275
3 8 0.0275
4 12 0.0412
5 223 0.7663

TABLE II
ABSOLUTE (f ) AND RELATIVE (p) FREQUENCIES OF MARGIN
WIDTHS FALLING INTO A CERTAIN INTERVAL IN MINUTES

IN THE REAL-WORLD SAMPLES OF PREFERENES

Interval f p

[0, 10] 49 0.1684
[11, 20] 54 0.1856
[21, 30] 66 0.2268
[31, 40] 36 0.1237
[41, 50] 21 0.0722
[51, 60] 12 0.0412
[61, 70] 14 0.0481
[71, 80] 6 0.0206
[81, 90] 3 0.0103
[91, 100] 2 0.0069
[101, 110] 1 0.0034
[111, 120] 2 0.0069
[131, 140] 1 0.0034
[151, 160] 1 0.0034

Interval f p

[171, 180] 2 0.0069
[181, 190] 2 0.0069
[191, 200] 2 0.0069
[211, 220] 1 0.0034
[221, 230] 1 0.0034
[251, 260] 3 0.0103
[261, 270] 1 0.0034
[271, 280] 1 0.0034
[281, 290] 4 0.0137
[291, 300] 2 0.0069
[321, 330] 1 0.0034
[571, 580] 1 0.0034
[701, 1100] 2 0.0069

TABLE III
ABSOLUTE (f ) AND RELATIVE (p) FREQUENCIES OF A TIME BEING

WISHED BY n FLIGHTS IN THE REAL-WORLD SAMPLES OF PREFERENCES

n f p

1 239 0.9019
2 26 0.0981

B. Configurations

We executed different test runs as part of our work. In
between the test runs, changes to the implementation and

Fig. 9. Time wished and time not after relative to the time assigned (in the
original flight list) for each flight in a representative example synthetic dataset
employed in the experiments. The black point was added for illustration
purposes, denoting a flight where the time assigned is 50 minutes before
the time not after and 10 minutes after the time wished.

adjustments to the configuration of the GA have been re-
alised to increase the performance. The results presented in
Section VI cover the final experimental run. This experi-
mental run has been designed to compare the performance
of different obfuscation approaches when combined with an
auction-based market mechanism. Therefore, we chose three
obfuscation methods (Actual Values, Fitness Range Quantiles,
Order Quantiles). The method Actual Values has been chosen
as a baseline for comparison and practically represents no
obfuscation of fitness values, whereby the estimated fitness
values of solutions correspond to their actual fitness values
(refer to Section IV-B regarding the fitness function). Fitness
Range Quantiles represents obfuscation methods that do not
require sorting, the number of buckets was set to 20. Order
Quantiles represents obfuscation methods that require sorting
and the number of quantiles was set to 10. See section IV-C
for more details about the obfuscation methods.

We repeated each test five times and used the mean results
for further analysis. Each test execution has been configured
to terminate after a maximum of 500 generations.

Despite the obfuscation methods, the remaining configu-
ration was the same for all test executions in the final run.
The GA was configured with a population size of 500, so
that each generation consists of 500 individuals; i.e. candidate
solutions. For the selection of survivors, a truncation selector
was applied to select the 10 individuals with the highest fitness
values in each generation. Likewise, a truncation selector was
used to select 10 individuals for recombination to produce the
offspring. 95% of each newly created population have been



Fig. 10. The mean relative fitness in percent of the optimal solution’s fitness
found over five runs with 500 generations for each dataset and obfuscation
method (actual values ▽, fitness range quantiles ⊠, and order quantiles ⋆)

created as offspring, the remaining 5% as survivors. Regarding
altering during evolution, a swap mutator was used with a
probability of 15% which randomly swapped the slots of two
flights in a solution. Additionally, the offspring was randomly
altered with a probability of 99% using the same mutation
approach.

C. Metrics

We investigate performance of the genetic algorithm in
its various configurations, measured by the fitness of the
found solution relative to the optimal solution returned by
the deterministic Hungarian method. We are further interested
in the convergence of the genetic algorithm: After a certain
number of generations, the genetic algorithm will hardly make
improvements. The fewer generations it takes to find a good
solution, the better in terms of running time.

VI. EXPERIMENTAL RESULTS

In the following, we present the results of the experiments.
More detailed results as well as links to the data can be found
in the online appendix [31].

A. Performance

This section presents the results from the conducted per-
formance experiments. First, we will give details regarding
the achieved fitness values relative to the optimum fitness as
determined by the Hungarian algorithm.

Table IV shows the mean and minimum fitness values for
each combination of dataset and obfuscation method, relative
to the optimum fitness of the respective dataset. The values
represent the mean and minimum fitness value of the best
solution found after 500 generations.

Overall, the method actual values achieved the best results
with a mean relative fitness over all datasets of 89.19%. This
method has been added as a baseline for comparison and in
fact represents no obfuscation of fitness methods by using the
actual fitness values of each solution as the basis for evolution
by the GA. Therefore, it was expected that this approach
performs best, as information is not limited by it.

TABLE IV
MEAN AND MINIMUM RELATIVE FITNESS OF THE SOLUTIONS FOUND

OVER FIVE RUNS WITH 500 GENERATIONS PER OBFUSCATION METHOD
(ACTUAL VALUES, FITNESS RANGE QUANTILES, ORDER QUANTILES)

AND DATASET IN % OF THE OPTIMAL SOLUTION’S FITNESS

Dataset Actual Values Fitness Range Quant. Order Quant.
Mean Min Mean Min Mean Min

1 83.12 78.04 85.28 82.43 81.73 78.85
2 85.22 81.93 85.03 82.60 86.23 82.89
3 89.37 85.70 88.34 87.54 87.65 86.19
4 88.54 84.66 88.72 85.93 88.80 86.49
5 88.27 87.29 87.62 83.52 88.93 87.54
6 90.64 88.14 90.07 88.50 90.70 86.53
7 89.19 87.29 89.29 86.30 90.51 87.17
8 89.15 84.89 87.36 84.85 90.56 89.37
9 86.94 84.41 85.75 83.77 85.82 83.34
10 90.88 89.49 87.21 83.47 87.00 85.67
11 90.32 89.67 90.84 88.44 92.32 90.76
12 87.74 86.27 89.18 84.87 89.70 88.06
13 89.25 85.99 89.03 85.94 90.35 87.07
14 89.76 87.79 87.99 82.10 90.38 89.34
15 91.41 91.24 89.96 86.37 89.62 87.13
16 91.71 90.33 90.91 89.77 91.45 88.32
17 91.37 88.95 89.62 85.89 90.18 89.11
18 89.97 86.68 89.10 85.92 89.39 87.85
19 89.64 88.34 87.99 85.76 88.93 87.64
20 91.37 89.48 89.59 88.52 87.79 85.51

However, the obfuscation methods Fitness Range Quantiles
and Order Quantiles performed only slightly worse, with mean
relative fitness values over all datasets of 88.14% and 88.90%,
respectively. This shows that sufficiently good average perfor-
mance can still be achieved, even if information about fitness
values and dominance of individuals is reduced significantly.

However, in real-world settings, consistent performance
might be equally important as the average results. The mini-
mum relative fitness achieved by the methods Actual Values
and Order Quantiles over all datasets and experiments was
roughly 78%. Surprisingly, the highest minimum relative fit-
ness was achieved by the obfuscation method Fitness Range
Quantiles, topping the other two methods by nearly 4% with
a value of 82.10%. Extended experiments might be required
to further investigate this result.

Figure 10 also visualizes the mean performance for each
dataset and obfuscation method. The figure confirms that
although Actual Values has been found to achieve the best
overall performance, there are various instances in which the
mean performance for a dataset with the obfuscation methods
Fitness Range Quantiles and Order Quantiles surpass this
method.

B. Convergence

Figure 11 shows, for each obfuscation method included in
the final test run, the mean absolute fitness value over all
datasets in each of the 500 maximum iterations. A dashed
horizontal line indicates the mean optimum fitness over all
datasets. It can be seen that solutions converge to sufficiently
good regions before the maximum iterations are reached.
Although the steepness of the curves indicate that further
improvements are still possible after 500 generations, opti-



Fig. 11. The solid line indicates the mean fitness value of the solution found in each generation, aggregated over all datasets and repetitions, using the
obfuscation methods (a) actual Values, (b) fitness range quantiles, and (c) order quantiles. The dashed line indicates the mean fitness value of the solutions
found by the Hungarian algorithm, aggregated over all datasets.

mizations might be terminated after less than 500 iterations
in time-critical settings and still produce satisfactory results.
Furthermore, the convergence of obfuscation methods with
limited information does not seem to be inferior to the results
with actual fitness values.

VII. DISCUSSION

The experiments show that using the SlotMachine approach
to optimization of flight lists can also be applied in conjunction
with the auction-based mechanism. The bids can be translated
into weight maps, with infeasible exchanges being penalized
with a large negative fitness. The obtained results have a
high utility compared to the optimum that could be found
by the heuristic Hungarian method. The privacy-preserving
implementation of the Hungarian method has a considerable
computational overhead [3]. The performance improvements
of using a genetic algorithm for searching the solutions
and multi-party computation for evaluating the solutions in
an iterative manner works considerably faster, and has the
advantage that the genetic algorithm can be aborted anytime
and still return a result [4]. We can therefore conclude that
the SlotMachine architecture can also be used in the future
implementations of a production-ready system that employs
an auction-based mechanism.

VIII. SUMMARY AND FUTURE WORK

We showed that a genetic algorithm together with multi-
party computation (MPC) may serve to find feasible exchanges
with high global utility for an auction-based market mecha-
nism for ATFM slot swapping while preserving privacy of the
confidential inputs of AUs. We conducted experiments using
realistic synthetic datasets based on preferences for flights
in real-world regulations provided by experts from Swiss
International Air Lines.

Future work will investigate performance improvements
for the proposed approach. Furthermore, future work will

investigate market dynamics over time and risks to privacy
as well as potential exploits that enables AUs to cheat the
system by misrepresenting their utilities.
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