

(c) 2013 M. Jeusfeld

Fixing MOF + RDF (?)
A View from the ConceptBase Data Model

Manfred Jeusfeld
Tilburg University

Johannes-Kepler-Univ, Linz
6. Juni 2013

(c) 2013 M. Jeusfeld

Brief History of ConceptBase

1985RML designed by Sol
Greenspan.

CML “informal descript-
Ion”

1-1987

Start of ConceptBase
Development in
Passau

1990

“ConceptBase” coined
by Matthias Jarke;
first prototype for DAIDA

1988

Logical features
implemented;
Telos paper

Move to Aachen
1992

1995Java user interface;
Dedicated object store;
ECA rules;
ConceptBase paper

Separation from
BIM-Prolog

2001

2002Tabling

ConceptBase is free
software;
Functions as queries

2010

2012Version 7.4 published

2009Metamodeling book

10-1987

Modules
1994

(c) 2013 M. Jeusfeld

Figure on the instantiation in the 1987 CML paper

(c) 2013 M. Jeusfeld

The Meta Object Facility (MOF)

Source:
OMG (2010): UML Infrastructure Version 2.3

(c) 2013 M. Jeusfeld

Metamodeling with ConceptBase

Node

EntityType

in

Domain

in

ent_attr

Employee Integer
salary

Bill 10000
earns

connectedTo

Proposition

= instanceOf

(c) 2013 M. Jeusfeld

M2=Schema

M1=Instance

Not
represented

Never
changes

OMG meta modeling is just about M2 and M1 (schema and its instance)

(c) 2013 M. Jeusfeld

What is different then in ConceptBase?

id x m y

P-fact table

Proposition

Node

EntityType

Employee

Bill
salary

Schema

Instance

ConceptBase also has just one schema (the P fact table) and and its instance
(the extension of the table) but schema and instance have nothing to do with
the MOF levels M3,M2,M1,M0.

Instead, instantiation between two objects is just represented as a tuple
in the P-fact table.

Any number of abstraction levels is supported and there is no constraint that forbids
to associate objects from different abstraction levels.

ent_attr

connectedTo

earns

Generic constructs

Modeling notations

Models/schemas

Data/executions

Abstraction levels (IRDS,MOF)1

concrete

generic

M0

M1

M2

M3

1) The OMG Meta Object Facility (MOF) is not limited to M0-M3 though in practice these 4 levels appear sufficient for metamodeling.
 Prior to MOF, the same abstraction levels were proposed in the ISO IRDS standard (1990). M0-M2 were pioneered by J. Abrial (1974)

Generic constructs

Modeling notations

Models/schemas

Data/executions

Level pairs

express
modeling
notation with
generic
constructs

express
model with
modeling notation

express data/
executions with
models

● constraints on the higher level define allowed instantiations of concepts/constructs

Model+constraints

Data

Level pairs and “simple” constraints

The lower level has to satisfy the constraints of the upper level.
Constraints/rules are referring to the upper level by constants
(or predicate/function names). Objects at the lower level
are referred to by variables.

Typical example: Object Constraint Language of UML (OCL)
Classical logic (and Description Logic) follow the same scheme

forall x,y F(x,y) ==> G(y)

{x1,x2,...}

Rich generic constructs

Rich modeling notations

Models/schemas

Data/executions

Meta level pairs

constrain
the models
by expressing
the notation in
terms of
generic constructs
plus their
meta constraints

example:
generic construct
for model element

constrain data/
execution by
rich modeling
constructs

example: cardinality
construct

Models

Data

Meta level pairs and “generic” constraints

{x1,x2,...}

Modeling notations transitive: xRy,yRz==>xRz

ancestor: transitive

Define generic constraints at the meta level that operate
on objects two levels below.

The specific problem statement

● Can we have a library of re-usable generic constructs
including a specification of their semantics such that new
modeling languages can be defined in terms on these
constructs?

● We rely on 1st order logics (more precisely: Datalog with
negation) for defining the constructs and their re-use:
computable semantics, efficient implementations

Concept

EntityType

Employee

mary bill

M0

M1

M3

Person

Domain

e_attr

Integer

salary

1000

sal1

M2

anne

Figure 1: An interpretation of the MOF abstraction levels

The MOF abstraction levels

define modeling
language

define generic
constructs

construct language-
conforming models

use models

PS: 'Concept' is a synonym for 'Node'!

Predicates

x

c

In(x,c)
The object x is an
instance of object c
(=its class)

c

d

Isa(c,d)
The object c is a
specialization of d
(=its superclass)

x

d
m

c

y

n

AL(x,m,n,y)

P(c!m,c,m,d)
P(x!n,x,n,y)
In(x!n,c!m)

The object x has an
attribute n with value y;
this attribute has the
class m (c!m)

Interpretation of predicates vs. classes

Employee

mary john joanne

In(x,Employee)

a partially instantiated predicate

{In(mary,Employee),In(john,Employee,
 In(joanne,Employee}

an interpretation of the predicate, here:
the Herbrand interpretation of the predicate

Datalog: compute the minimal Herbrand interpretation with a fixpoint operator

Concept

EntityType

Employee

mary bill

M0

M1

M3

Person

Domain

e_attr

Integer

salary

1000

sal1

M2

anne

Figure 1: An interpretation of the MOF abstraction levels

MOF in Logic

In(EntityType,Concept)
AL(EntityType,attribute,e_attr,Domain)
In(Domain,Concept)

In(Employee,EntityType)
In(Integer,Domain)
AL(Employee,e_attr,salary,Integer)

IsA(Employee,Person)

In(anne,Employee)
In(bill,Employee)
AL(bill,salary,sal1,1000)
In(1000,Integer)

Some generic constructs

● 'key' property of certain attributes of a relation (or
entity type)

● transitivity (symmetry,etc.) of a relation

● the fact that something is an entity and not a value

● the traceability of model elements

● Idea: formulate those constructs as a generic
formula and use partial evaluation to map to
concrete languages

Definition

 A variable occurrence x1 in a predicate p is called a
meta variable iff p=In(x,x1), or p=AL(x,x1,n,y). A
generic formula is a first order formula with at least
one meta variable.

x

x1

c1 Concept

EntityType

Employee

EntityType

Employee

Hans_Huber

Example: the 'necessary' construct

forall x,a,c,m,d In(a,necessary)
and P(a,c,m,d) and In(x,c) ⇒
exists y,n In(y,d) and
AL(x,m,n,y)

x

d

m
c

necessary

y

Certain attributes of concepts
are declared as 'necessary', i.e.
each instance x of class c must
have a filler y for the necessary
attribute m.

n

Partial evaluation

● transform meta formula into a normal form
(exposing the so-called E predicate)

● replace the E-predicate by its interpretation
(=current set of facts matching the E-predicate)

● repeat until no more meta variables

 Result: conjunction (disjunction) of formulas without
meta variables; components of the formula are
defining the semantics of the use of a construct

Generic formula

∀ c,d,m E1(c,d,m) ⇒ (∀ x In(x,c)
⇒ ∃ y,n In(y,d) ᴧ AL(x,m,n,y))

∀ a,c,m,d In(a,necessary) ᴧ
P(a,c,m,d) ⇒ E1(c,d,m)

In(EntityType!e_attr, necessary)

E1(EntityType,Domain,e_attr)

∀ x In(x,EntityType) ⇒ ∃ y,n
In(y,Domain) ᴧ AL(x,e_attr,n,y))

Facts

Partially
evaluated
formula(s)

The 'necessary' construct is now (very)
reusable!

e_attr

necessary

EntityType Domain

name

Employee String

● The 'necessary' construct has been defined independently
 from the abstraction level (M0-M3). Hence, it can be used for
 defining modeling language constructs (e_attr) as well for defining
 model element (name attribute of Employee)

(M2)

(M1)

Another example

We just need to define those basic relational properties once and
then re-use their definitions for defining modeling constructs

transitiveantisymmetric asymmetric

subClassOf partOf

reflexive

A useful shortcut: In2(x,mc)

∀ x,c,mc In(x,c) ᴧ In(c,mc) ⇒
In2(x,mc)

mc

c

x The formula is evaluated as a deductive rule (deriving In2).
It relates objects to their meta classes. Instead of partially
evaluating it, we just replace each In2(x,mc) by
  c In(x,c) ᴧ In(c,mc)

Infix syntax for In2(x,mc) : (x [in] mc)

EntityType

ET

e

Distinguish entities from values (1)

“An ‘entity’ is an instance of some entity type ET.”

forall e,ET
 In(e,ET) and In(ET,EntityType)
 ==> In(e,Entity)

“No entity type may have an empty interpretation.”

forall ET In(ET,EntityType) ==>
 (exists e In(e,Entity) and (e in ET))

Entity

In2(e,EntityType)

M2

M1

M0

EntityType

ET

e

Entity

Domain

DO

v

Value

Make sure that entities and values are disjoint sets:
forall e In2(e,EntityType) ==> In(e,Entity)
forall v In2(v,Domain) ==> In(v,Value)
forall e In(e,Entity) ==> not In(e,Value)
forall v In(v,Value) ==> not In(v,Entity)

M2

M1

M0

Mario Bunge: Treatise on Basic Philosophy. Vol 3, Ontology I: The Furniture of the World,
Reidel, Boston, 1977.

Distinguish entities from values (2)

EntityType

ET

e

Entity

Domain

DO

v

Value

M2

M1

M0

Distinguish entities from values (3)

e_attr

a

If we add the link 'attr' (attribute between Entity and Value), then
we can use this schema for querying the data level M0
independent from the domain model (ERD).
Example query: give me all entities that share a value ...

attr

A complete specification is available from
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2230805/MacroFormulas.sml.txt

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2230805/MacroFormulas.sml.txt

M1

M2

NodeOrLink

ME

x

Traceability (1)
“A model element is simply anything at the ML.”

forall x In2(x,NodeOrLink) ==> In(x,ModelElement)

ModelElement

The class ModelElement is useful to define some general constructs
such as linkage between model elements and then use that for
traceability queries (see next slides).

M3

NodeOrLink

LINK

x

Traceability (2)

forall x
 In2(x,NodeLink!connectedTo) ==> In(x,ModelElement!linkto)

ModelElement

y

connectedTo

linkto

M3

M2

M1

NodeOrLink

LINK

x

Traceability (3)

Connectedness can be checked in terms of linkto

ModelElement

y

connectedTo

linkto

M3

M2

M1

transitive
symmetric

This definition allows to formulate queries in terms of ModelElement (M2)
and to check whether two model elements (M1) are linked to each other.

ConceptBase definitions for traceability

ModelElement in Class with
 symmetric,transitive
 linkto: ModelElement
 rule
 me1: $ forall x/VAR (x [in] NodeOrLink) ==> (x in ModelElement) $;
 me2: $ forall link/VAR (link [in] NodeOrLink!connectedTo)
 ==> (link in ModelElement!linkto) $
end

UnconnectedModelElement in GenericQueryClass isA ModelElement with
 parameter
 start : ModelElement
 constraint
 uc : $ not (start linkto this) $
end

This query checks whether two model elements (M1) are linked to
each other, regardless of the modeling notation at M2!

ConceptBase and the Resource Description Framework (RDF, RDFS)

RDF statements are represented as triples

(subject,predicate,object)

URI URI

(Johannes_Kepler, wrote, Astronomia_Nova)

(mammal, type, resource)
(human, subClassOf, mammal)
(horse, subClassOf, mammal)

(book, type, resource)

(Johannes_Kepler, type, human)

Examples:

Reification with RDF: regard the statement itself as a resource (object)

(Johannes_Kepler, wrote, Astronomia_Nova)

(statement1, type, statement)
(statement1, subject, Johannes_Kepler)
(statement1, predicate, wrote)
(statement1, object, Astronomia_Nova)

(Wikipedia, claims, statement1)

So, four triples instead just one!

What about reifying the reified statements?

Reification with Telos (as implemented by ConceptBase)

P(id1, id_Kepler, wrote, id_Astronomia_Nova)

P(id2, id_Wikipedia, claims, id1)

● each P-fact quadruple has its own identity
● so, reification is a built-in feature
● even instantiation statements have their own identity

a P-fact

P(id3, id2, instanceOf, id_Utterance)

More on this: see paper by M. Wolpers on O-Telos-RDF

More features

(c) 2013 M. Jeusfeld

Evaluating depth of nesting in ConceptBase

● depth-of-nesting is defined on the parse tree of a flowgraph, e.g.
 Seq(P1,Nest(D2,D1)). This parse tree is a bit difficult to create with
 just deductive query classes. But as soon as we have it, we can rather easily
 implement depth-of-nesting by recursive functions on ConceptBase

Function depth isA Integer with
 parameter
 x: Construct
 constraint
 cval: $ (x in P1) and (this = 0) or
 (x in D0) and (this = 1) or
 (x in D1) and (this = 1) or
 (x in D2) and (this = 1) or
 (x in D3) and (this = 1) or
 (exists a1,a2/Construct (x in Seq)
 and (x part/p1 a1) and (x part/p2 a2)
 and (this = maxf(depth(a1),depth(a2)))) or
 (exists b2/Construct (x in Nest) and (x part/p2 b2)
 and (this = depth(b2)+1))
 $
end

depth(x) =

0 if x ∈ P1

1 if x ∈ Di
(i=0,1,2,3)

max(depth(a1),depth(a2)) if
x=a1;a2
depth(b2)+1 if x=b1(b2)

(c) 2013 M. Jeusfeld

Displaying depth of nesting in ConceptBase

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3060630/SeqNestMetric.sml.txt

Complete example in:

p11

nest1

example flowgraph

if1

se
q1

se
q2

while1(if2)

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3060630/SeqNestMetric.sml.txt

(c) 2013 M. Jeusfeld

... to summarize

MOF vs. ConceptBase:
“Leave MOF levels out of the language!”

RDF vs. ConceptBase:
“Reify each statement!”

(c) 2013 M. Jeusfeld

Multi-level modeling: example from Neumayr,Grün,Schrefl 2009

Hypothesis: Concretization is combination of instantiaion and specialization

(c) 2013 M. Jeusfeld

Multi-level modeling: a first attempt with ConceptBase

(c) 2013 M. Jeusfeld

To do list

● faster translation of object identifiers to memory addresses

● modules (=set of P-facts) with multiple super-modules

● from client-server to peer-to-peer

● Parallel Datalog engine

...

(c) 2013 M. Jeusfeld

More on ...

http://conceptbase.cc

http://conceptbase.cc/

(c) 2013 M. Jeusfeld

Stephanie Kethers
Bettina v. Buol
Peter Szczurko
Klaus Pohl
Panos Vassiliadis
Mohamed Dahchour
Ralf Klamma
Birgit Bayer
Daniel Gross
Vinay K. Chaudhri
Günter Gans
Hadhami Dhraief
(J. Jayasinghe Arachchige)

Manfred Jeusfeld
Thomas Rose
Martin Staudt
Hans Nissen
Gerhard Steinke
Dominik Schmitz
Armin Eberlein
Christoph Quix
Stefan Eherer
Patrick Chen
Willem-Jan vd Heuvel
Kees Leune
Martin Wolpers
Quan C. Dang

Some PhD thesis utilizing ConceptBase

(c) 2013 M. Jeusfeld

Major contributions to the source code of ConceptBase were made by:
Lutz Bauer (module system), Rainer Gallersdörfer (object store),
Manfred Jeusfeld (CB server, logic foundation, function component),
Eva Krüger (integrity component), Thomas List (object store), Hans
Nissen (module system), Christoph Quix (CB server, view
component), Christoph Radig (object store), René Soiron (optimizer),
Martin Staudt (CB server, query component), Kai von Thadden (query
component), and Hua Wang (answer formatting).

Additional contributions came from Masoud Asady, Markus Baumeister,
Ulrich Bonn, Stefan Eherer, Michael Gebhardt, Dagmar Genenger,
Michael Gocek, Rainer Hermanns, David Kensche, André Klemann,
Rainer Langohr, Tobias Latzke, Xiang Li, Yong Li, Farshad Lashgari,
Andreas Miethsam, Martin Pöschmann, Achim Schlosser, Tobias
Schöneberg, Claudia Welter, Thomas Wenig, and others.

Thank you, folks!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45

